
Supervised Machine Learning

Notes by José A. Espiño P. 1

Summer Semester 2022–2023

1The content in these notes is sourced from what was covered in the MOOG the document is named
after. I claim no autorship over any of the contents herein.

Contents

1 Introduction to Machine Learning 2

2 Linear Regression Model 3

3 Multiple Linear Regression 7
3.1 Polynomial Regression . 11
3.2 Scikit–Learn . 11

4 Classification 12

1 Introduction to Machine Learning

Machine Learning is a field of study that gives computers the ability to learn without being
explicitly programmed (Arthur Samuel). The more options you give to a learning algorithm,
the better they will perform. The two main types of ML algorithms are supervised learning
and unsupervised learning; the former is the one that has experienced the most rapid ad-
vancements and been used the most.
Supervised Learning refers to algorithms that learn input to output mappings. The key
characteristic of these algorithms is that they are given examples to learn from, namely, the
correct label y for a given input x . By seeing a large amount of these pairs, the algorithm
eventually learns how to match a given x to a satisfactory y by generating an equation (e.g.
for a straight line, a curve) with appropriate values that will allow the prediction to be accu-
rate. Within supervised learning, there are two big types: regression, which maps the input
to continuous values in a range, and classification, which maps x to a discrete set of possible
outputs.
Unsupervised Learning refers to finding patterns or structures in data as opposed to classi-
fying (supervising) it. Clustering is a subtype of unsupervised learning that, as the name im-
plies, places unlabeled data in different clusters. Anomaly Detection detects unsual events
or features within a group of data. Dimensionality Reduction compresses the size of a set
of data.
Some notation:

• Training Set: data used to train the model. The total number of training samples is
denoted by m

• Input Feature: input value(s). Denoted as x

• Target Variable: output value(s). Denoted as y

• Parameters of a model: variables you adjust during training to improve the model.
Also called coefficients or weights.

2

2 Linear Regression Model

It consists of fitting a straight line to the data and is one of the most widely used ML algo-
rithms. Recall that in a training set we have input-output pairs. To train the model, you feed
this set to the algorithm so that it produces a function f , which then can produce an output
given a new input(which is not found in the training set). This estimated output is normally
denoted as ŷ .
In linear regression, f will be a linear function, namely: fw ,b (X) =w x + b . The values cho-
sen for w and b are the ones that will determine ŷ . Linear functions tend to be used due
to their simplicity: this makes manipulation easier or can be used as a base for fitting more
complex non–linear models. Linear Regression can be univariate or multiple depending on
the amount of input features introduced.
In order for the algorithm to work, we have to construct a cost function. This function allows
us to measure how well the line fits the data; it takes the prediction ŷ and compares it to the
target y by computing (ŷ i−y i)2 (the error). We want to measure the error accross the entire
dataset, so the function will be:

J (w , b) =
1

2m

∑

m
i=1(ŷ

i − y i)2

Or

J (w , b) =
1

2m

∑

m
i=1(fw ,b (x

i)− y i)2

This is called the squared error cost function, which is one of many possible cost functions
to use. Our goal is to find the parameters that successfully minimise the cost function we
have chosen for our model.
This function can be implemented in Python as follows:

1 import numpy as np
2 #the following arrays contain the training data
3 x_train = np.array ([1.0, 2.0]) #(size in 1000 square feet)
4 y_train = np.array ([300.0 , 500.0]) #(price in 1000s of

dollars)
5

6 def compute_cost(x, y, w, b):
7 """
8 Computes the cost function for linear regression.
9

10 Args:
11 x (ndarray (m,)): Data , m examples
12 y (ndarray (m,)): target values
13 w,b (scalar) : model parameters
14

15 Returns
16 total_cost (float): The cost of using w,b as the parameters

for linear regression
17 to fit the data points in x and y
18 """
19 # number of training examples
20 m = x.shape [0]

3

21

22 cost_sum = 0
23 for i in range(m):
24 f_wb = w * x[i] + b
25 cost = (f_wb - y[i]) ** 2
26 cost_sum = cost_sum + cost
27 total_cost = (1 / (2 * m)) * cost_sum
28

29 return total_cost
30

31 cost = compute_cost(x_train , y_train , parameterw , parameterb)
32 return cost

How can we minimise the cost function (and any other function for that matter) then?
We can utilise gradient descent:

1. Start off with random guesses for the initial values of the variables you are trying to
minimise

2. Update the values of the variables repeatedly until the cost function settles at a mini-
mum (reaches convergence). This update is done through the following:

w =w −α
∂

∂ w
J (w , b) =w −α

1

m

∑

m
i=1(fw ,b (x

i − y i))x i

and

b = b −α
∂

∂ b
J (w , b) = b −α

1

m

∑

m
i=1(fw ,b (x

i − y i))

Where α is the learning rate.
It is important to note that the variables must be updated simultaneously on each
iteration.

The choice of the learning rate (α) is very important! If it is too small, an expensive num-
ber of iterations will be needed to reach convergence. Alternatively, if it is too big, it might
overshoot and never reach convergence. The learning rate can be scheduled: be big in the
first iterations and become smaller as the algorithm gets closer to the minimum. If the algo-
rithm takes too long or the cost value increases at any point, a good way to troubleshoot is
by decreasing the value of the learning rate. A technique commonly used is to set a possible
range for the learning rate and start from the smallest number to the largest in the range
(until the cost function starts to increase). This will eventually provide us with the ideal
learning rate.
An interesting property of gradient descent is that it will always lead you to the local mini-
mum closest to the initial values it is given.
Take a look at a sample implementation:

1 import math , copy
2 import numpy as np
3

4 # Load our data set
5 x_train = np.array ([1.0, 2.0]) #features

4

6 y_train = np.array ([300.0 , 500.0]) #target value
7

8 #Function to calculate the cost
9 def compute_cost(x, y, w, b):

10

11 m = x.shape [0]
12 cost = 0
13

14 for i in range(m):
15 f_wb = w * x[i] + b
16 cost = cost + (f_wb - y[i])**2
17 total_cost = 1 / (2 * m) * cost
18

19 return total_cost
20

21 def compute_gradient(x, y, w, b):
22 """
23 Computes the gradient for linear regression
24 Args:
25 x (ndarray (m,)): Data , m examples
26 y (ndarray (m,)): target values
27 w,b (scalar) : model parameters
28 Returns
29 dj_dw (scalar): The gradient of the cost w.r.t. the parameters

w
30 dj_db (scalar): The gradient of the cost w.r.t. the parameter

b
31 """
32

33 # Number of training examples
34 m = x.shape [0]
35 dj_dw = 0
36 dj_db = 0
37

38 for i in range(m):
39 f_wb = w * x[i] + b
40 dj_dw_i = (f_wb - y[i]) * x[i]
41 dj_db_i = f_wb - y[i]
42 dj_db += dj_db_i
43 dj_dw += dj_dw_i
44 dj_dw = dj_dw / m
45 dj_db = dj_db / m
46

47 return dj_dw , dj_db
48

49 def gradient_descent(x, y, w_in , b_in , alpha , num_iters ,
cost_function , gradient_function):

50 """
51 Performs gradient descent to fit w,b. Updates w,b by taking
52 num_iters gradient steps with learning rate alpha
53

54 Args:
55 x (ndarray (m,)) : Data , m examples
56 y (ndarray (m,)) : target values

5

57 w_in ,b_in (scalar): initial values of model parameters
58 alpha (float): Learning rate
59 num_iters (int): number of iterations to run gradient

descent
60 cost_function: function to call to produce cost
61 gradient_function: function to call to produce gradient
62

63 Returns:
64 w (scalar): Updated value of parameter after running gradient

descent
65 b (scalar): Updated value of parameter after running gradient

descent
66 """
67

68 b = b_in
69 w = w_in
70

71 for i in range(num_iters):
72 # Calculate the gradient and update the parameters using

gradient_function
73 dj_dw , dj_db = gradient_function(x, y, w , b)
74

75 # Update Parameters
76 b = b - alpha * dj_db
77 w = w - alpha * dj_dw
78

79 # Print cost every at intervals 10 times or as many
iterations if < 10

80 if i% math.ceil(num_iters /10) == 0:
81 print(f"Iteration {i:4}: Cost {J_history [-1]:0.2e} ",
82 f"dj_dw: {dj_dw: 0.3e}, dj_db: {dj_db: 0.3e} ",
83 f"w: {w: 0.3e}, b:{b: 0.5e}")
84

85 return w, b #return w and J
86

87 # initialize parameters
88 w_init = 0
89 b_init = 0
90

91 # some gradient descent settings
92 iterations = 10000
93 tmp_alpha = 1.0e-2
94

95 # run gradient descent
96 w_final , b_final= gradient_descent(x_train ,y_train , w_init , b_init ,

tmp_alpha ,
97 iterations ,

compute_cost , compute_gradient)
98 print(f"(w,b) found by gradient descent: ({ w_final :8.4f},{b_final

:8.4f})")

6

3 Multiple Linear Regression

In most cases there is more than one element as an input. In that instance, every element in
the input training set is usually represented as a row vector with n elements, where n =the
number of input features. The linear model will be altered to fit these new features, from
fw ,b (X) = w x + b to fw ,b (X) = w1 x1 +w2 x2 + . . . +wn xn + b . A simpler definition can be
obtained by letting W be a vector containing w1 through wn . We do the same with X , thus
obtaining: fw⃗ ,b (X⃗) = w⃗ · x⃗ + b
Vectorisation is a concept often used in ML; it can make the code both more efficient and
short. A common way to implement vectorisation is by using functions defined in theNumPy
library. For instance, as opposed to writing a for–loop to iterate through two vectors and
sum the product of each pair, we can just use the function np.dot(v1,v2). Some other
common vectorisation methods are:

• outer(v1,v2): computes the outer product of two vectors

• multiply(v1,v2): matrix product of two arrays

• zeros((n,m)): returns a matrix of given shape and type filled with zeroes

• vector.shape: returns the shape of the element

• vector[index]: returns item at index

• matrix[x,y]: accesses item at coordinates x,y

Vectorisation is more efficient because it uses the computer’s parallel processing hardware.
Similarly to the linear model, gradient descent will also undergo modifications to allow for
multiple input features. For n features (n ≥ 2):
r e p e a t {

w1 =w1−α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
1

. . .

wn =wn −α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
n

And then, as before, we update b :

b = b −α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))

Multiple Variable Linear Regression can be implemented with Python as follows:

1 import copy , math
2 import numpy as np
3

4 #sample input
5 X_train = np.array ([[2104 , 5, 1, 45], [1416 , 3, 2, 40], [852, 2, 1,

35]])
6 y_train = np.array ([460, 232, 178])
7

7

8 #Initialisation with random variables
9 b_init = 785.1811367994083

10 w_init = np.array([0.39133535 , 18.75376741 , -53.36032453 ,
-26.42131618])

11

12 def predict(x, w, b):
13 """
14 single predict using linear regression
15 Args:
16 x (ndarray): Shape (n,) example with multiple features
17 w (ndarray): Shape (n,) model parameters
18 b (scalar): model parameter
19

20 Returns:
21 p (scalar): prediction
22 """
23 p = np.dot(x, w) + b
24 return p
25

26 def compute_cost(X, y, w, b):
27 """
28 compute cost
29 Args:
30 X (ndarray (m,n)): Data , m examples with n features
31 y (ndarray (m,)) : target values
32 w (ndarray (n,)) : model parameters
33 b (scalar) : model parameter
34

35 Returns:
36 cost (scalar): cost
37 """
38 m = X.shape [0]
39 cost = 0.0
40 for i in range(m):
41 f_wb_i = np.dot(X[i], w) + b #(n,)(n,) = scalar (

see np.dot)
42 cost = cost + (f_wb_i - y[i])**2 #scalar
43 cost = cost / (2 * m) #scalar
44 return cost
45 def compute_gradient(X, y, w, b):
46 """
47 Computes the gradient for linear regression
48 Args:
49 X (ndarray (m,n)): Data , m examples with n features
50 y (ndarray (m,)) : target values
51 w (ndarray (n,)) : model parameters
52 b (scalar) : model parameter
53

54 Returns:
55 dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the

parameters w.
56 dj_db (scalar): The gradient of the cost w.r.t. the

parameter b.
57 """

8

58 m,n = X.shape #(number of examples , number of features
)

59 dj_dw = np.zeros ((n,))
60 dj_db = 0.
61

62 for i in range(m):
63 err = (np.dot(X[i], w) + b) - y[i]
64 for j in range(n):
65 dj_dw[j] = dj_dw[j] + err * X[i, j]
66 dj_db = dj_db + err
67 dj_dw = dj_dw / m
68 dj_db = dj_db / m
69

70 return dj_db , dj_dw
71

72 def gradient_descent(X, y, w_in , b_in , cost_function ,
gradient_function , alpha , num_iters):

73 """
74 Performs batch gradient descent to learn w and b. Updates w and

b by taking
75 num_iters gradient steps with learning rate alpha
76

77 Args:
78 X (ndarray (m,n)) : Data , m examples with n features
79 y (ndarray (m,)) : target values
80 w_in (ndarray (n,)) : initial model parameters
81 b_in (scalar) : initial model parameter
82 cost_function : function to compute cost
83 gradient_function : function to compute the gradient
84 alpha (float) : Learning rate
85 num_iters (int) : number of iterations to run gradient

descent
86

87 Returns:
88 w (ndarray (n,)) : Updated values of parameters
89 b (scalar) : Updated value of parameter
90 """
91

92

93

94 w = copy.deepcopy(w_in) #avoid modifying global w within
function

95 b = b_in
96

97 for i in range(num_iters):
98

99 # Calculate the gradient and update the parameters
100 dj_db ,dj_dw = gradient_function(X, y, w, b) ##None
101

102 # Update Parameters using w, b, alpha and gradient
103 w = w - alpha * dj_dw ##None
104 b = b - alpha * dj_db ##None
105

106

9

107

108 # Print cost every at intervals 10 times or as many
iterations if < 10

109 if i% math.ceil(num_iters / 10) == 0:
110 print(f"Iteration {i:4d}: Cost {J_history [-1]:8.2f} ")
111

112 return w, b #return final w,b
113

114 # initialize parameters
115 initial_w = np.zeros_like(w_init)
116 initial_b = 0.
117 # some gradient descent settings
118 iterations = 1000
119 alpha = 5.0e-7
120 # run gradient descent
121 w_final , b_final = gradient_descent(X_train , y_train , initial_w ,

initial_b ,
122 compute_cost ,

compute_gradient ,
123 alpha ,

iterations)
124 print(f"b,w found by gradient descent: {b_final :0.2f},{w_final} ")
125 m,_ = X_train.shape
126 for i in range(m):
127 print(f"prediction: {np.dot(X_train[i], w_final) + b_final :0.2f

}, targ

Feature Scaling is a technique that lets gradient descent run much faster. When the pos-
sible range of a feature is large, the model is likely to learn to choose a relatively small pa-
rameter value; conversely, when the possible range of a feature is small, its parameter will
likely take a large value. When the range of certain features is too disimillar, it takes a long
while for gradient descent to reach the minimum of the cost function. To work around this,
we scale some features so that their range is the same (usually from 0 to 1). This leads to a
quicker path to the minimum.
Feature scaling can be implemented by dividing each entry by the maximum value in the
range of the feature. In addition to this, feature scaling can also be implemented through
normalisation: re–scaling all features so that they are centered around zero (having both
positive and negative values). To calculate it, you must first find the average (µ). Then, for
each entry, you will do xi =

xi−µ
maximum value - minimum value . The last commonly–used method is

Z–score normalisation: you calculate the mean (µ) as well as the standard deviation (σ).
Then, each value xi will be xi =

xi−µ
σ

As a rule of thumb, when doing feature scaling, you should aim for ranges somewhere around
−1 and +1.
Take a look at this implementation of Z–score normalisation in Python:

1 def zscore_normalize_features(X):
2 """
3 computes X, zcore normalized by column
4

5 Args:
6 X (ndarray (m,n)) : input data , m examples , n features

10

7

8 Returns:
9 X_norm (ndarray (m,n)): input normalized by column

10 mu (ndarray (n,)) : mean of each feature
11 sigma (ndarray (n,)) : standard deviation of each feature
12 """
13 # find the mean of each column/feature
14 mu = np.mean(X, axis =0) # mu will have shape

(n,)
15 # find the standard deviation of each column/feature
16 sigma = np.std(X, axis =0) # sigma will have

shape (n,)
17 # element -wise , subtract mu for that column from each example ,

divide by std for that column
18 X_norm = (X - mu) / sigma
19

20 return (X_norm , mu, sigma)

If the value of the cost function J ever increases through the execution of gradient de-
scent, either you have made a poor choice of a learning rate, or there is a bug in the code.
Usually, convergence is detected by setting a very small value (usually we have ε = 10−3)
and checking if the cost function decreases by an amount smaller than that value in one
iteration. If that is the case, we can stop the gradient descent.

3.1 Polynomial Regression

Sometimes a straight line is not the best fit for the dataset. When that is the case, we may
duplicate certain parameters and exponentiate those parameters. When this is the case,
feature scalling is as important as ever — this makes the range of the parameter grow expo-
nentially.

3.2 Scikit–Learn

Scikit–Learn is a very popular ML Python library. Take a look at the code excerpt below to
get familiar with some common methods that are used in implementing gradient descent:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.linear_model import SGDRegressor
4 from sklearn.preprocessing import StandardScaler #performs z-score

normalisation
5 from lab_utils_multi import load_house_data #only used in this lab
6 from lab_utils_common import dlc
7 np.set_printoptions(precision =2)
8 plt.style.use(’./ deeplearning.mplstyle ’)
9

10 X_train , y_train = load_house_data ()
11 X_features = [’size(sqft)’,’bedrooms ’,’floors ’,’age’]
12

13 #scaling

11

14 scaler = StandardScaler ()
15 X_norm = scaler.fit_transform(X_train)
16

17 #create regression model
18 sgdr = SGDRegressor(max_iter =1000)
19 sgdr.fit(X_norm , y_train)
20

21 #view parameters
22 b_norm = sgdr.intercept_
23 w_norm = sgdr.coef_
24

25 # make a prediction using sgdr.predict ()
26 y_pred_sgd = sgdr.predict(X_norm)
27 # make a prediction using w,b.
28 y_pred = np.dot(X_norm , w_norm) + b_norm

4 Classification

Binary classification is when there are only two possible output categories (e.g. spam email
detectors). Linear regression does not work for classification problems because any outlier
training samples may cause the decision boundary to shift and thus render the algorithm
inaccurate. Classification is instead approached with algorithms such as logistic regression.
Logistic Regression is one of the most commonly used classification algorithms currently.
With logistic regression, our goal is to fit a curve onto the data to make the output be one
of a discrete set of possible values. The meat of logistic regression is the Sigmoid function,
also known as the logistic function. The Sigmoid function (g (z) = 1

1+e −z) will only output
values between 0 and 1. That considered, logistic regression can be achieved through the
following steps:

1. Let us define the basis of the model we shall be using; z = w⃗ · x⃗ + b

2. Pass z into the Sigmoid function

3. This gives us the Logistic Regression model:

fw⃗ ,b (X⃗) = g (w⃗ · x⃗ + b) =
1

1+ e −(w⃗ ·x⃗+b)

The output of the logistic regression model is the probability that the inputted value is part
or not of a given category. A way we can let the algorithm predict an output is to set a thresh-
old; every value above it will be of a certain category, every value below it will be in a different
category. The decision boundary is the line where z = w⃗ · x⃗ + b = 0, which separates ele-
ments of different categories. Using polynomials, you can make the decision boundary be
a complex non–linear function.
In logistic regression, the cost function is different to the one we utilised earlier; this is be-
cause using the squared error cost function on the logistic regression model, we obtain a
non-convex graph. This implies that gradient descent can get sucked into one of the many

12

local minima to be found in the function. The squared error cost function we have been
using so far is J (w⃗ , b) = 1

m

∑

m
i=1

1
2 (fw⃗ ,b (x⃗ i)− y i)2. If we regard L = fw⃗ ,b (x⃗ i)− y i)2 as the loss

function of the equation, we can try change it to make the squared error cost be convex too
in the case of logistic regression. The loss function that achieves this is:

L (fw⃗ ,b (X⃗ i),y i) =

¨

−l o g (fw⃗ ,b (X⃗ i)), y i = 1,

−l o g (1− fw⃗ ,b (X⃗ i)), y i = 0.

This loss function can be further simplified to allow for higher efficiency. This results in:

L (fw⃗ ,b (X⃗
i), y i) =−y i l o g (fw⃗ ,b (X⃗

i)− (1− y i)l o g (1− fw⃗ , b)(X⃗ (i)))

This considered, take a look at how this new cost function can be implemented on Python:

1 import numpy as np
2

3 def compute_cost_logistic(X, y, w, b):
4 """
5 Computes cost
6

7 Args:
8 X (ndarray (m,n)): Data , m examples with n features
9 y (ndarray (m,)) : target values

10 w (ndarray (n,)) : model parameters
11 b (scalar) : model parameter
12

13 Returns:
14 cost (scalar): cost
15 """
16

17 m = X.shape [0]
18 cost = 0.0
19 for i in range(m):
20 z_i = np.dot(X[i],w) + b
21 f_wb_i = sigmoid(z_i)
22 cost += -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i)
23

24 cost = cost / m
25 return cost

With all of this covered, we can proceed to implement gradient descent: similarly to linear
regression, gradient descent will consist in finding the parameters that can minimise the
cost function J by continuously performing the following until convergence:

w1 =w1−α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
1

. . .

wn =wn −α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
n

And then, as before, we update b :

b = b −α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))

13

As you might have noticed, this is the same as the gradient descent formula in the case of
linear regression. The key difference here is that our definition of fw⃗ ,b has changed: it is the
Sigmoid function in logistic regression. This can all be implemented with Python as follows:

1 import copy , math
2 import numpy as np
3

4 #random dataset for the example
5 X_train = np.array ([[0.5 , 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2],

[1, 2.5]])
6 y_train = np.array([0, 0, 0, 1, 1, 1])
7

8 def compute_gradient_logistic(X, y, w, b):
9 """

10 Computes the gradient for linear regression
11

12 Args:
13 X (ndarray (m,n): Data , m examples with n features
14 y (ndarray (m,)): target values
15 w (ndarray (n,)): model parameters
16 b (scalar) : model parameter
17 Returns
18 dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the

parameters w.
19 dj_db (scalar) : The gradient of the cost w.r.t. the

parameter b.
20 """
21 m,n = X.shape
22 dj_dw = np.zeros ((n,)) #(n,)
23 dj_db = 0.
24

25 for i in range(m):
26 f_wb_i = sigmoid(np.dot(X[i],w) + b) #(n,)(n,)=

scalar
27 err_i = f_wb_i - y[i] #scalar
28 for j in range(n):
29 dj_dw[j] = dj_dw[j] + err_i * X[i,j] #scalar
30 dj_db = dj_db + err_i
31 dj_dw = dj_dw/m #(n,)
32 dj_db = dj_db/m #scalar
33

34 return dj_db , dj_dw
35

36 def gradient_descent(X, y, w_in , b_in , alpha , num_iters):
37 """
38 Performs batch gradient descent
39

40 Args:
41 X (ndarray (m,n) : Data , m examples with n features
42 y (ndarray (m,)) : target values
43 w_in (ndarray (n,)): Initial values of model parameters
44 b_in (scalar) : Initial values of model parameter
45 alpha (float) : Learning rate
46 num_iters (scalar) : number of iterations to run gradient

14

descent
47

48 Returns:
49 w (ndarray (n,)) : Updated values of parameters
50 b (scalar) : Updated value of parameter
51 """
52

53 w = copy.deepcopy(w_in) #avoid modifying global w within
function

54 b = b_in
55

56 for i in range(num_iters):
57 # Calculate the gradient and update the parameters
58 dj_db , dj_dw = compute_gradient_logistic(X, y, w, b)
59

60 # Update Parameters using w, b, alpha and gradient
61 w = w - alpha * dj_dw
62 b = b - alpha * dj_db
63

64 # Print cost every at intervals 10 times or as many
iterations if < 10

65 if i% math.ceil(num_iters / 10) == 0:
66 print(f"Iteration {i:4d}: Cost {J_history [-1]} ")
67

68 return w, b #return final w,b

5 Overfitting and Underfitting

Underfitting refers to when the model is too general and does not provide the specificity
required by the dataset provided. Underfitting is also referred to as the algorithm having
high bias. Conversely, if the model is too specific to the training set, fitting the data too well,
it is referred to as overfitting, or that the model has high variance. These two problems are
relevant because they prevent the model from achieving generalisation: their predictions
will not be accurate when fed new inputs.
There are several ways to address a model with high variance. Adding more training data is
a very efficient method; however, data is not always readily available. Another method is to
select features to include or exclude; this works because sometimes some features might not
provide enough data, which skews the model. The third technique used to tackle overfit-
ting is regularisation, namely, reducing the size of parameters w j without demanding them
be zero. Regularisation lets you keep all of your features but prevents them from having an
overly large effect.
A quick way to achieve regularisation is by altering the cost function. For instance, we can
multiply the weight we want to penalise by a very large number and sum it to the cost func-
tion. This means that the weight will be "penalised" and will be prevented from growing too
large when conducting gradient descent. Very often, we do not know which parameters will
be problematic. When that is the case, we penalise all of them by adding a term λ

2m

∑n
j=1 w 2

j .
The value λ is known as the regularisation parameter, which we have to choose every time

15

we apply regularisation. Usually the term b is not penalised!
Since regularisation implies altering the cost function, this will also have an impact on the
gradient descent algorithm:
The case of linear regression now looks like
For n features (n ≥ 2):
r e p e a t {

w1 =w1−α[
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
1 +
λ

m
w1]

. . .

wn =wn −α[
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
n +
λ

m
wn]

And then, as before, we update b :

b = b −α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))

In the case of logistic regression, it will look like:

w1 =w1−α[
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
1 +
λ

m
wn]

. . .

wn =wn −α[
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))x i
n +
λ

m
wn]

And then, as before, we update b :

b = b −α
1

m

∑

m
i=1(fw⃗ ,b (x⃗

i − y i))

Let us see an implementation of logistic regression with regularisation on Python:

1 import numpy as np
2 import copy
3 import math
4

5 mapped_X = map_feature(X_train[:, 0], X_train[:, 1])
6 # load dataset
7 X_train , y_train = load_data("data/ex2data2.txt")
8

9 def compute_cost_reg(X, y, w, b, lambda_ = 1):
10 """
11 Computes the cost over all examples
12 Args:
13 X : (array_like Shape (m,n)) data , m examples by n features
14 y : (array_like Shape (m,)) target value
15 w : (array_like Shape (n,)) Values of parameters of the model
16 b : (array_like Shape (n,)) Values of bias parameter of the

model
17 lambda_ : (scalar , float) Controls amount of regularization
18 Returns:
19 total_cost: (scalar) cost
20 """

16

21

22 m, n = X.shape
23

24 # Calls the compute_cost function that you implemented above
25 cost_without_reg = compute_cost(X, y, w, b)
26

27 # You need to calculate this value
28 reg_cost = sum(np.square(w))
29

30 ### START CODE HERE ###
31

32 ### END CODE HERE ###
33

34 # Add the regularization cost to get the total cost
35 total_cost = cost_without_reg + (lambda_ /(2 * m)) * reg_cost
36

37 return total_cost
38

39 X_mapped = map_feature(X_train[:, 0], X_train[:, 1])
40 np.random.seed (1)
41 initial_w = np.random.rand(X_mapped.shape [1]) - 0.5
42 initial_b = 0.5
43 lambda_ = 0.5
44 cost = compute_cost_reg(X_mapped , y_train , initial_w , initial_b ,

lambda_)
45

46 print("Regularized cost :", cost)
47

48 # UNIT TEST
49 compute_cost_reg_test(compute_cost_reg)
50

51 def compute_gradient_reg(X, y, w, b, lambda_ = 1):
52 """
53 Computes the gradient for linear regression
54

55 Args:
56 X : (ndarray Shape (m,n)) variable such as house size
57 y : (ndarray Shape (m,)) actual value
58 w : (ndarray Shape (n,)) values of parameters of the model
59 b : (scalar) value of parameter of the model
60 lambda_ : (scalar ,float) regularization constant
61 Returns
62 dj_db: (scalar) The gradient of the cost w.r.t.

the parameter b.
63 dj_dw: (ndarray Shape (n,)) The gradient of the cost w.r.t.

the parameters w.
64

65 """
66 m, n = X.shape
67

68 dj_db , dj_dw = compute_gradient(X, y, w, b)
69

70 ### START CODE HERE ###
71 for i in range(n):

17

72 dj_dw[i] = dj_dw[i] + (lambda_/m)* w[i]
73 ### END CODE HERE ###
74

75 return dj_db , dj_dw
76

77 X_mapped = map_feature(X_train[:, 0], X_train[:, 1])
78 np.random.seed (1)
79 initial_w = np.random.rand(X_mapped.shape [1]) - 0.5
80 initial_b = 0.5
81

82 lambda_ = 0.5
83 dj_db , dj_dw = compute_gradient_reg(X_mapped , y_train , initial_w ,

initial_b , lambda_)
84

85 print(f"dj_db: {dj_db}",)
86 print(f"First few elements of regularized dj_dw :\n {dj_dw [:4]. tolist

()}",)
87

88 # UNIT TESTS
89 compute_gradient_reg_test(compute_gradient_reg)
90

91 # Initialize fitting parameters
92 np.random.seed (1)
93 initial_w = np.random.rand(X_mapped.shape [1]) -0.5
94 initial_b = 1.
95

96 # Set regularization parameter lambda_ (you can try varying this)
97 lambda_ = 0.01
98

99 # Some gradient descent settings
100 iterations = 10000
101 alpha = 0.01
102

103 w,b, J_history ,_ = gradient_descent(X_mapped , y_train , initial_w ,
initial_b ,

104 compute_cost_reg ,
compute_gradient_reg ,

105 alpha , iterations , lambda_)
106

107 p = predict(X_mapped , w, b)
108

109 print(’Train Accuracy: %f’%(np.mean(p == y_train) * 100))

18

