
Advanced Learning Algorithms

Notes by José A. Espiño P. 1

Summer Semester 2022–2023

1The content in these notes is sourced from what was covered in the MOOG the document is named
after. I claim no autorship over any of the contents herein.

Contents

1 Neural Network Inference 2
1.1 TensorFlow implementation . 4

2 Neural Network Training 6
2.1 Activation functions . 7
2.2 Multiclass Classification . 8

3 Practical Advice for Building Machine Learning Systems 11

4 Decision Trees 21

1 Neural Network Inference

The original motivation behind neural networks was to replicate how the human brain learns
and thinks; now it has significantly diverged from that. In the human brain, neurons re-
ceive, process, and transmit electrical impulses. Often, an individual neuron aggregates in-
puts from multiple other neurons before generating an output. The artificial neural network
utilises a mathematical model of what a neuron does: a neuron takes an input, process it,
and sends it to another neuron. When building a model, rather than building a single neu-
ron at a time, we simulate many such neurons simultaneously.

Neural Networks have exploded in recent years because, as opposed to traditional AI,
neural networks can keep on improving on accuracy the more training samples they re-
ceive.
Let us illustrate the way neural networks work through an example, demand prediction:
Demand prediction will take several features of a product as an input (placed in the in-
put layer), and generate an output that says whether or not the product will be a top–seller
(placed in the output layer. A neuron is an element that will take certain inputs, compute a
value, and send that value to the next layer of neurons for further processing. Imagine you
are given a piece of clothing as an input. In the first layer, as an input, you will have price,
cost of shipping, marketing, and material quality. You might suspect that the ways a piece
of clothing becomes a top seller are several: the affordability (combination of shipping cost
and pricing), awareness (function of marketing), and perception of quality (function of ma-
terial quality and pricing). We are going to feed the required inputs from the input layer to
a layer with three neurons that will calculate each of these. For instance, the first neuron in
this second layer could use logistic regression with prices/shipping costs where the output
is, do people think this is affordable? This layer (of which a neural network can have an in-
finite amount) is called the hidden layer. The intermediate values calculated by the hidden
layers (e.g. affordability and awareness) are also called activations. Lastly, the output layer
neuron will utilise the information generated by the neurons in the hidden layer and gen-
erate an output regarding the popularity of a given product. It is important to notice that all
the neurons in each layer will have access to all the output information from the previous

2

layer. Because of this, the input and output can be represented as vectors of values (X⃗ , Y⃗).

A good way of thinking of a neural network is that it’s an automated version of feature
engineering: the relationship between the last hidden layer and the output layer in this ex-
ample is just logistic regression but it has more efficient functions that lead to better pre-
dictions. When training a neural network, it is important to notice that it will figure out the
best features to use all by itself — no need for you to guide the model in any direction!
A similar idea can be applied to computer vision (CV). An image is made up of pixels, which
can be seen as matrices of pixel elements, each containing information about its brightness,
colour... What if we unroll this matrix into a feature vector and feed it into a neural network?
The first hidden layer will extract some features from the input, which will be fed as an out-
put vector to the next layer, and so on, until you reach an output layer that gives you the
probability of it being a person x . Each layer will be focusing in something different: one
might be focusing in detection of the bottom of an ear, curves in the face, eyes, etc.

Neural network layers are the fundamental blocks of modern neural networks. Quanti-
ties related to each layer are denoted with a bracketed superscript. For example, the out-
put and activating values of the first layer of a network are a⃗ [1] and w⃗ [1], b [1],α[1] respec-
tively. When counting the layers of a neural network, we usually include the output layer
but not the input layer in the count. Generalising, the activation value of layer l , neuron

j is a [l]j = g (w⃗ j · a⃗ l−1 + b l
j), where g () is the activation function. This could be the sigmoid

function g (x) = 1
1+e −x or other functions that shall be introduced later.

Forward propagation is a common algorithm to make predictions. It consists of going from
the input layer to the output layer on a layer–by–layer basis. This is in contrast to backward
propagation, which is often used for training and we shall cover later on. Here is a simple
neural network implemented with Python, Tensorflow, and Keras:

1 import numpy as np
2 import tensorflow as tf
3 from tensorflow.keras.layers import Dense , Input
4 from tensorflow.keras import Sequential
5 from tensorflow.keras.losses import MeanSquaredError ,

BinaryCrossentropy
6 from tensorflow.keras.activations import sigmoid
7 from lab_utils_common import dlc
8 from lab_neurons_utils import plt_prob_1d , sigmoidnp , plt_linear ,

plt_logistic
9 plt.style.use(’./ deeplearning.mplstyle ’)

10 import logging
11 logging.getLogger("tensorflow").setLevel(logging.ERROR)
12 tf.autograph.set_verbosity (0)
13

14 X_train = np.array ([[1.0] , [2.0]] , dtype=np.float32) #(
size in 1000 square feet)

15 Y_train = np.array ([[300.0] , [500.0]] , dtype=np.float32) #(
price in 1000s of dollars)

16

17 #Let us define a layer with one neuron and compare it to linear

3

regression
18 linear_layer = tf.keras.layers.Dense(units=1, activation = ’linear ’,

)
19

20 #the input layer must be in 2-D, so we need to reshape it before
passing it into linear layer

21 a1 = linear_layer(X_train [0]. reshape (1,1))
22 #When we instantiate it like this , the weight and bias will be

initialised to random values
23 w, b= linear_layer.get_weights ()
24 #Let us set them to definite values
25 set_w = np.array ([[200]])
26 set_b = np.array ([100])
27

28 # set_weights takes a list of numpy arrays
29 linear_layer.set_weights ([set_w , set_b])
30

31 #Notice that now , these two will have the same output!
32 a1 = linear_layer(X_train [0]. reshape (1,1))
33 print(a1)
34 alin = np.dot(set_w ,X_train [0]. reshape (1,1)) + set_b
35 print(alin)
36

37 prediction_tf = linear_layer(X_train)
38 prediction_np = np.dot(X_train , set_w) + set_b

1.1 TensorFlow implementation

Imagine we are trying to determine whether or not the quality of roasted coffee is good
based on the time it was cooked and the temperature it was used. We will do this using
TensorFlow the following way:

1 ’’’
2 Not covered here:
3 -How to load libraries
4 -How to load parameters w and b
5 ’’’
6 x = np.array ([[200.0 , 17.0]])
7 #Dense refers to the type of layer of the neural network we have

learnt so far. There are other types.
8 layer_1 = Dense(units=3, activation=’sigmoid ’)
9 a1 = layer_1(x)

10 layer_2 = Dense(units = 1, activation = ’sigmoid ’)
11 a2 = layer_2(a1)
12

13 #thresholding
14 if a2 >= 0.5:
15 yhat = 1
16 else:
17 yhat = 0

There are some inconsistencies in how TensorFlow and NumPy handle data. When you
write x = np.array([200, 17]), you are creating a 1x 2 matrix; however, if you write

4

x = np.array([200, 17]), it results in a 1D vector instead of a 2D matrix. With Tensor-
Flow, the convention is to represent data as tensors. This is because that way, it can compute
large data more efficiently. You can convert TensorFlow tensors into NumPy array with the
function tensorname.numpy().
Forward propagation and learning can be implemented differently through TensorFlow: in-
stead of passing the data manually from each layer, you can string different layers into one
network through the sequential framework:

1 #Define layers as before
2 layer_1 = Dense(units=3, activation=’sigmoid ’)
3 layer_2 = Dense(units = 1, activation = ’sigmoid ’)
4 #use the sequential framework
5 model = Sequential ([layer_1 , layer_2])

Two finally be able to utilise this network you need to use two methods: model.compile(...)
which we will cover later, and model.fit(x,y), where x and y are NumPy tensors for the
input and output respectively. Lastly, the method model.predict(x_new)will do the for-
ward propagation for you.
Usually, the previous implementation is shortened to:

1 model = Sequential ([Dense(units=3, activation="sigmoid"),Dense(units
=1, activation="sigmoid")])

Although this is hardly standard practise when it comes to real–life implementation of
neural networks, let us learn how to code a neural network from scratch using Python so
that we can deepen our knowledge about what is happening in each layer.

1 import numpy as np
2 import tensorflow as tf
3 from lab_utils_common import dlc , sigmoid
4 from lab_coffee_utils import load_coffee_data , plt_roast , plt_prob ,

plt_layer , plt_network , plt_output_unit
5 import logging
6 logging.getLogger("tensorflow").setLevel(logging.ERROR)
7 tf.autograph.set_verbosity (0)
8

9 X,Y = load_coffee_data ();
10 #pre -existing dataset
11 #For reference: print(X.shape , Y.shape) --> (200, 2) (200, 1)
12

13 #Normalise the data
14 norm_l = tf.keras.layers.Normalization(axis=-1)
15 norm_l.adapt(X) # learns mean , variance
16 Xn = norm_l(X)
17

18 # Define the activation function
19 g = sigmoid
20

21 #Define the function to compute the activations of a dense layer
22 def my_dense(a_in , W, b):
23 """
24 Computes dense layer
25 Args:

5

26 a_in (ndarray (n,)) : Data , 1 example
27 W (ndarray (n,j)) : Weight matrix , n features per unit , j

units
28 b (ndarray (j,)) : bias vector , j units
29 Returns
30 a_out (ndarray (j,)) : j units|
31 """
32 units = W.shape [1]
33 a_out = np.zeros(units)
34 for j in range(units):
35 w = W[:,j]
36 z = np.dot(w, a_in) + b[j]
37 a_out[j] = g(z)
38 return(a_out)
39

40 #the following function builds a two -layer neural network using the
function above

41 def my_sequential(x, W1, b1, W2 , b2):
42 a1 = my_dense(x, W1, b1)
43 a2 = my_dense(a1 , W2, b2)
44 return(a2)
45 #Let us create a function to predict
46 def my_predict(X, W1 , b1, W2, b2):
47 m = X.shape [0]
48 p = np.zeros ((m,1))
49 for i in range(m):
50 p[i,0] = my_sequential(X[i], W1, b1, W2 , b2)
51 return(p)

Vectorisation has allowed neural networks to be scaled up and improved significantly, es-
pecially because this allows parallel computing hardware to be utilised the most efficiently.
For instance, we can improve on the previously introduced activation-calculator as follows:

1 ’’’
2 Import relevant libraries
3 ’’’
4 X = np.array ([200 , 17]) #2d array
5 W = np.array ([[1, -3, 5], [-2, 4, -6]]) #2d array
6 B = np.array ([[-1, 1, 2]]) #1x3 2D array
7

8 def dense(A_in , W, B):
9 Z = np.matmul(A_in ,W) + B #vectorised to avoid for -loop

10 A_out = g(Z) #apply the activation function
11 return A_out

2 Neural Network Training

The code you normally would use in TensorFlow to train a network is the following:

1 import tensorflow as tf
2 from tensorflow.keras import Sequential
3 from tensorflow.keras.layers import Dense
4

6

5 #Sequentially string together layers of neural network
6 model = Sequential ([Dense(units =25, activation=’sigmoid ’), Dense(

units=15, activation=’sigmoid ’), Dense(units = 1, activation = ’
sigmoid ’)])

7

8 from tensorflow.keras.losses import BinaryCrossentropy
9

10 #Ask TensorFlow to compile the model. Key: specify the loss function
11 model.compile(loss=BinaryCrossentropy ())
12

13 #Call the fit function. It fits the dataset X,Y into the model
specified earlier using the loss

14 #function added in the compile step
15 model.fit(X,Y,epochs =100)
16 #Epoch refers to the number of steps in gradient descent

Let us understand in detail what is happening in each of these steps.
Let us recall the steps of logistic regression in the previous course:

1. Specify how to compute the output given input x and parameters w , b

2. Specify the loss and cost functions to be utilised

3. Use gradient descent to minimise the cost as a function of parameters w⃗ and b

These same three steps are valid for training neural networks:

1. Specify how different layers of the neural network should be stringed together.

2. Compile the model and tell it which loss/cost to use. The most commonly used one
is logistic loss, also known as binary cross entropy. This is the same as the one used
for logistic regression (L (f (x⃗ , y)) = −y l o g (f (x⃗)) − (1 − y)l o g (1 − f (x⃗))). There are
a lot more loss functions available; for instance, if you are working on a regression
problem, you can call model.compile(loss = MeanSquaredError()).

3. Call the .fitmethod to minimise the cost function that uses the loss specified in the
previous step. This will trigger gradient descent; namely, repeat updates to parame-
ters until convergence. The key part of this algorithm is computing the partial deriva-
tive of each weight, and TensorFlow (as well as most other libraries) do this through
backpropagation. There are actually some algorithms that are more efficient than gra-
dient descent, which we shall see later.

2.1 Activation functions

Up to this point, the only activation function we have covered is the sigmoid function. This
is however not the best function we can use. Rather than modelling functions as either out-
putting one or zero, we can model them as, for instance, outputting a non–negative number.
This function is what is called the ReLU, which stands for rectified linear unit. There is also
the linear activation function, which is only g (z) = z . When this one is used, sometimes it
is said that no activation function is used.

7

Depending on what the target label is, there is a fairly natural function for the output layer.
The process of choosing this function can get a little trickier when it comes to the activation
function of the hidden layers.
For the output layer:

• Binary Classification: Use the sigmoid function

• Regression (positive and negative values): Use the linear activation function

• Regression with only positive values: ReLU

For the hidden layer, the most common function by far is ReLU. This is because ReLU is
faster to compute. Additionally, it only goes flat in one part of the graph — the negative
side. The sigmoid function, on the other hand, flattens at two sides. This flattening slows
down the learning.
There are a lot more activation functions, such as the tan h activation function, leaky ReLU,
swish, among others; however, they are beyond the scope of our discussion in this docu-
ment.
We need activation functions because without it, the networks would only be able to com-
pute linear regression — not anything more complex. Remember that a linear function of a
linear function is a linear function.

2.2 Multiclass Classification

Multiclass classification refers to classification where you can have more than just two pos-
sible outputs.
The Softmax Regression Algorithm is a generalisation of the logistic regression algorithm
that allows us to carry out multiclass classification. The output of logistic regression is how
likely an input x⃗ is to be a member of a class a1. However, we can also say the output gives
us the probability it is in a2, since the sum of both probabilities must be 1. Generalising this,
if we have n possible outputs, the function will compute z1 = w⃗1 · x⃗ + b1, z2 = w⃗2 · x⃗ + b2,
. . . , zn = w⃗n · x⃗ + bn . Then, it will pass z into the function ai =

e zi

e z1+e z2+...+e zn This is called
softmax regression.
The cost function for softmax regression will also change: instead of−y l o g a1−(1−y)l o g (1−
a1), we will use:

l o s s (a1, a2, · · · , aN , y) =

−l o g (a1), y = 1,

−l o g (a2), y = 2,

...

−l o g (aN), y =N .

Usually, the activation for the output layer is the one that is computed using the softmax
regression function. We will compute z regularly as w⃗ · a⃗ +b for every layer, and then to get
each a we need to plug these z values into the softmax activation function. On TensorFlow,
this would be implemented as

8

1 import tensorflow as tf
2 from tensorflow.keras import Sequential
3 from tensorflow.keras.layers import Dense
4

5 #specify the model
6 model = Sequential ([Dense(units =25, activation = ’relu’), Dense(

units=15, activation=’relu’), Dense(units=10, activation=’softmax
’)])

7

8 #specify loss and cost
9 from tensorflow.keras.losses import SparseCategoricalCrossentropy

10

11 #from_logits=True gives TensorFlow freedom in deciding how to
compute --> higher numerical accuracy

12 model.compile(loss=SparseCategoricalCrossentropy(from_logits=True))
13

14 #train on data to minimise the cost function
15 model.fit(X,Y, epochs =100)
16

17 #Fit
18 logits = model(X)
19

20 #predict
21 f_x = tf.nn.sigmoid(logit)

Multi–label Classification refers to looking for several labels in a single input — commonly
used in Computer Vision. This is not the same as multi–class clasification.

Up to now, we have been relying on gradient descent to minimise the cost function; there
are however more efficient algorithms available. One of the most commonly used is Adam
(Adaptive Moment Estimation). As you might have noticed, gradient descent will always go
in the same direction on every step. Adam will take advantage of this fact and automatically
increaseα: it will see if the algorithm keeps taking very small steps in the same direction and
increase the value of alpha if that is the case. Adam also does the opposite: if the algorithm
keeps oscillating back and forth, it means that its learning rate is too large, so Adam will
adjust it.
Interestingly, Adam does not use a global value forαbut rather different rates for every single
parameter in the model. In code, Adam is implemented as:

1 #model
2 model = Sequential ([tf.keras.layers.Dense(units = 25, activation=’

sigmoid ’), tf.keras.layers.Dense(units=15, activation = ’sigmoid ’
), tf.keras.layers.Dense(units=10, activation=’linear ’)])

3 #compile
4 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate =1e-3)

, loss = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True))

5 #fit
6 model.fit(X,Y,epochs =100)

So far, we have only utilised the dense neuron layer type. The main feature of this type
of layer is every single one of its neurons gets all the activations from the previous layer as

9

an input. There are however several other types:

• Convolutional Layer: each neuron only looks at a part of the previous layer’s inputs.
This leads to faster computation and to need less training data — since the network
will be less prone to overfitting.

• Fully Connected

• Pooling

• Normalisation

• Recurrent

Here is an example of a neural network for hand written digit recognition:

1 import numpy as np
2 import tensorflow as tf
3 from tensorflow.keras.models import Sequential
4 from tensorflow.keras.layers import Dense
5 from tensorflow.keras.activations import linear , relu , sigmoid
6

7

8 import logging
9 logging.getLogger("tensorflow").setLevel(logging.ERROR)

10 tf.autograph.set_verbosity (0)
11

12 from public_tests import *
13

14 from autils import *
15 from lab_utils_softmax import plt_softmax
16 np.set_printoptions(precision =2)
17

18 plt_act_trio ()
19

20 def my_softmax(z):
21 """ Softmax converts a vector of values to a probability

distribution.
22 Args:
23 z (ndarray (N,)) : input data , N features
24 Returns:
25 a (ndarray (N,)) : softmax of z
26 """
27

28 ez = np.exp(z)
29 a = ez/np.sum(ez)
30

31 return a
32

33 z = np.array ([1., 2., 3., 4.])
34 a = my_softmax(z)
35 atf = tf.nn.softmax(z)
36

37 #Borrowing from a dataset available online

10

38 X, y = load_data ()
39

40 #represent the model
41 tf.random.set_seed (1234) # for consistent results
42 model = Sequential(
43 [
44 tf.keras.layers.InputLayer ((400 ,)),
45 tf.keras.layers.Dense(25, activation="relu", name="L1"),
46 tf.keras.layers.Dense(15, activation="relu", name="L2"),
47 tf.keras.layers.Dense(10, activation="linear", name="L3")
48], name = "my_model"
49)
50

51 [layer1 , layer2 , layer3] = model.layers
52

53 model.compile(
54 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=

True),
55 optimizer=tf.keras.optimizers.Adam(learning_rate =0.001) ,
56)
57

58 history = model.fit(
59 X,y,
60 epochs =40
61)
62

63 mage_of_two = X[1015]
64 display_digit(image_of_two)
65

66 prediction = model.predict(image_of_two.reshape (1 ,400)) #
prediction

67

68 print(f" predicting a Two: \n{prediction}")
69 print(f" Largest Prediction index: {np.argmax(prediction)}")
70

71 yhat = np.argmax(prediction_p)
72

73 print(f"np.argmax(prediction_p): {yhat}")

3 Practical Advice for Building Machine Learning Systems

Having a systematic way to evaluate your model can lead you to target and improve the
areas that might be hindering it. One technique is to split your dataset into groups. One
can be a training set and the other one can be a test set. The purpose of this is to assess the
model’s accuracy from being trained with the training set by using the test set. This is done
by computing the average error of the test set. This is the same of computing the test error.
If the test cost is high, this means that the model is not good at generalising.
We have seen that once the parameters w⃗ and b have been fit to the training set, the training
error may not be a good indicator of how well the algorithm will generalise to new exam-
ples that are outside the training set. If you want to automatically select a model for your

11

machine learning model is by splitting your data into three sets instead of two: the training
set, the testing set, and the cross–validation set. Cross–validation refers to it being an extra
set we use to check the validity of different models. Once we have this, we need to compute
the training, cross–validation, and test errors, not including the regularisating term that is
included during training.
Armed with these three values, we can do model selection by fitting the possible param-
eters from the models we are considering into the cross–validation set and compute the
cost function. The one that outputs the lowest cost is the most efficient. This rationale also
works for neural networks — train different networks and compare their performance with
the cost function of the cross–validation set.
It is standard practise to make decisions on the model only using the training and cross–validation
sets; only once you have come up with a final model will you evaluate it to the test set. This
guarantees that the test set is a fair estimate of how good the model will generalise to new
data.
Take a look at this example on splitting datasets into the three aforementioned subsets, eval-
uating regression and classification models, adding polynomial features to improve the per-
formance of a linear regression model, and comparing several neural network architectures:

1 # for array computations and loading data
2 import numpy as np
3

4 # for building linear regression models and preparing data
5 from sklearn.linear_model import LinearRegression
6 from sklearn.preprocessing import StandardScaler , PolynomialFeatures
7 from sklearn.model_selection import train_test_split
8 from sklearn.metrics import mean_squared_error
9

10 # for building and training neural networks
11 import tensorflow as tf
12

13 # custom functions
14 import utils
15

16 # reduce display precision on numpy arrays
17 np.set_printoptions(precision =2)
18

19 # suppress warnings
20 tf.get_logger ().setLevel(’ERROR ’)
21 tf.autograph.set_verbosity (0)
22

23 #developing a model for a regression problem
24 #Given a dataset of 50 examples with an input feature x and

corresponding target y
25 # Load the dataset from the text file
26 data = np.loadtxt(’./data/data_w3_ex1.csv’, delimiter=’,’)
27

28 # Split the inputs and outputs into separate arrays
29 x = data [:,0]
30 y = data [:,1]
31

12

32 # Convert 1-D arrays into 2-D because the commands later will
require it

33 x = np.expand_dims(x, axis =1)
34 y = np.expand_dims(y, axis =1)
35

36 #Split the dataset
37 # Get 60% of the dataset as the training set. Put the remaining 40%

in temporary variables: x_ and y_.
38 x_train , x_, y_train , y_ = train_test_split(x, y, test_size =0.40 ,

random_state =1)
39

40 # Split the 40% subset above into two: one half for cross validation
and the other for the test set

41 x_cv , x_test , y_cv , y_test = train_test_split(x_ , y_, test_size
=0.50, random_state =1)

42

43 # Delete temporary variables
44 del x_, y_
45

46 #Scale all the features for smooth processing
47 # Initialize the class
48 scaler_linear = StandardScaler ()
49

50 # Compute the mean and standard deviation of the training set then
transform it

51 X_train_scaled = scaler_linear.fit_transform(x_train)
52

53 print(f"Computed mean of the training set: {scaler_linear.mean_.
squeeze ():.2f}")

54 print(f"Computed standard deviation of the training set: {
scaler_linear.scale_.squeeze ():.2f}")

55

56 #train the model
57 # Initialize the class
58 linear_model = LinearRegression ()
59

60 # Train the model
61 linear_model.fit(X_train_scaled , y_train)
62

63 #Evaluate the model’s performance using the MSE for training and
crossvalidation sets

64 # Feed the scaled training set and get the predictions
65 yhat = linear_model.predict(X_train_scaled)
66

67 # Use scikit -learn’s utility function and divide by 2
68 print(f"training MSE (using sklearn function): {mean_squared_error(

y_train , yhat) / 2}")
69

70 # for -loop implementation
71 total_squared_error = 0
72

73 for i in range(len(yhat)):
74 squared_error_i = (yhat[i] - y_train[i])**2
75 total_squared_error += squared_error_i

13

76

77 mse = total_squared_error / (2*len(yhat))
78

79 print(f"training MSE (for -loop implementation): {mse.squeeze ()}")
80

81 # Scale the cross validation set using the mean and standard
deviation of the training set

82 X_cv_scaled = scaler_linear.transform(x_cv)
83

84 print(f"Mean used to scale the CV set: {scaler_linear.mean_.squeeze
():.2f}")

85 print(f"Standard deviation used to scale the CV set: {scaler_linear.
scale_.squeeze ():.2f}")

86

87 # Feed the scaled cross validation set
88 yhat = linear_model.predict(X_cv_scaled)
89

90 # Use scikit -learn’s utility function and divide by 2
91 print(f"Cross validation MSE: {mean_squared_error(y_cv , yhat) / 2}")
92

93 #Add polynomial features
94 # Instantiate the class to make polynomial features
95 poly = PolynomialFeatures(degree=2, include_bias=False)
96

97 # Compute the number of features and transform the training set
98 X_train_mapped = poly.fit_transform(x_train)
99

100 # Instantiate the class
101 scaler_poly = StandardScaler ()
102

103 # Compute the mean and standard deviation of the training set then
transform it

104 X_train_mapped_scaled = scaler_poly.fit_transform(X_train_mapped)
105

106 # Preview the first 5 elements of the scaled training set.
107 print(X_train_mapped_scaled [:5])
108

109 # Initialize the class
110 model = LinearRegression ()
111

112 # Train the model
113 model.fit(X_train_mapped_scaled , y_train)
114

115 # Compute the training MSE
116 yhat = model.predict(X_train_mapped_scaled)
117 print(f"Training MSE: {mean_squared_error(y_train , yhat) / 2}")
118

119 # Add the polynomial features to the cross validation set
120 X_cv_mapped = poly.transform(x_cv)
121

122 # Scale the cross validation set using the mean and standard
deviation of the training set

123 X_cv_mapped_scaled = scaler_poly.transform(X_cv_mapped)
124

14

125 # Compute the cross validation MSE
126 yhat = model.predict(X_cv_mapped_scaled)
127 print(f"Cross validation MSE: {mean_squared_error(y_cv , yhat) / 2}")
128

129 # Initialize lists containing the lists , models , and scalers
130 train_mses = []
131 cv_mses = []
132 models = []
133 scalers = []
134

135 # Loop over 10 times. Each adding one more degree of polynomial
higher than the last.

136 for degree in range (1,11):
137

138 # Add polynomial features to the training set
139 poly = PolynomialFeatures(degree , include_bias=False)
140 X_train_mapped = poly.fit_transform(x_train)
141

142 # Scale the training set
143 scaler_poly = StandardScaler ()
144 X_train_mapped_scaled = scaler_poly.fit_transform(X_train_mapped

)
145 scalers.append(scaler_poly)
146

147 # Create and train the model
148 model = LinearRegression ()
149 model.fit(X_train_mapped_scaled , y_train)
150 models.append(model)
151

152 # Compute the training MSE
153 yhat = model.predict(X_train_mapped_scaled)
154 train_mse = mean_squared_error(y_train , yhat) / 2
155 train_mses.append(train_mse)
156

157 # Add polynomial features and scale the cross validation set
158 poly = PolynomialFeatures(degree , include_bias=False)
159 X_cv_mapped = poly.fit_transform(x_cv)
160 X_cv_mapped_scaled = scaler_poly.transform(X_cv_mapped)
161

162 # Compute the cross validation MSE
163 yhat = model.predict(X_cv_mapped_scaled)
164 cv_mse = mean_squared_error(y_cv , yhat) / 2
165 cv_mses.append(cv_mse)
166

167 # Get the model with the lowest CV MSE (add 1 because list indices
start at 0)

168 # This also corresponds to the degree of the polynomial added
169 degree = np.argmin(cv_mses) + 1
170 print(f"Lowest CV MSE is found in the model with degree ={ degree}")
171

172 # Add polynomial features to the test set
173 poly = PolynomialFeatures(degree , include_bias=False)
174 X_test_mapped = poly.fit_transform(x_test)
175

15

176 # Scale the test set
177 X_test_mapped_scaled = scalers[degree -1]. transform(X_test_mapped)
178

179 # Compute the test MSE
180 yhat = models[degree -1]. predict(X_test_mapped_scaled)
181 test_mse = mean_squared_error(y_test , yhat) / 2
182

183 print(f"Training MSE: {train_mses[degree -1]:.2f}")
184 print(f"Cross Validation MSE: {cv_mses[degree -1]:.2f}")
185 print(f"Test MSE: {test_mse :.2f}")
186

187

188 ’’’
189 Let
190 Us
191 Work
192 on
193 Neural
194 Networks
195 ’’’
196

197 #Prepare the data
198 # Add polynomial features
199 degree = 1
200 poly = PolynomialFeatures(degree , include_bias=False)
201 X_train_mapped = poly.fit_transform(x_train)
202 X_cv_mapped = poly.transform(x_cv)
203 X_test_mapped = poly.transform(x_test)
204

205 #Scale Input
206 # Scale the features using the z-score
207 scaler = StandardScaler ()
208 X_train_mapped_scaled = scaler.fit_transform(X_train_mapped)
209 X_cv_mapped_scaled = scaler.transform(X_cv_mapped)
210 X_test_mapped_scaled = scaler.transform(X_test_mapped)
211

212 # Initialize lists that will contain the errors for each model
213 nn_train_mses = []
214 nn_cv_mses = []
215

216 # Build the models
217 nn_models = utils.build_models ()
218

219 # Loop over the the models
220 for model in nn_models:
221

222 # Setup the loss and optimizer
223 model.compile(
224 loss=’mse’,
225 optimizer=tf.keras.optimizers.Adam(learning_rate =0.1),
226)
227

228 print(f"Training {model.name }...")
229

16

230 # Train the model
231 model.fit(
232 X_train_mapped_scaled , y_train ,
233 epochs =300,
234 verbose =0
235)
236

237 print("Done!\n")
238

239

240 # Record the training MSEs
241 yhat = model.predict(X_train_mapped_scaled)
242 train_mse = mean_squared_error(y_train , yhat) / 2
243 nn_train_mses.append(train_mse)
244

245 # Record the cross validation MSEs
246 yhat = model.predict(X_cv_mapped_scaled)
247 cv_mse = mean_squared_error(y_cv , yhat) / 2
248 nn_cv_mses.append(cv_mse)
249

250

251 # print results
252 print("RESULTS:")
253 for model_num in range(len(nn_train_mses)):
254 print(
255 f"Model {model_num +1}: Training MSE: {nn_train_mses[

model_num]:.2f}, " +
256 f"CV MSE: {nn_cv_mses[model_num]:.2f}"
257)
258 # Select the model with the lowest CV MSE
259 model_num = 3
260

261 # Compute the test MSE
262 yhat = nn_models[model_num -1]. predict(X_test_mapped_scaled)
263 test_mse = mean_squared_error(y_test , yhat) / 2
264

265 print(f"Selected Model: {model_num}")
266 print(f"Training MSE: {nn_train_mses[model_num -1]:.2f}")
267 print(f"Cross Validation MSE: {nn_cv_mses[model_num -1]:.2f}")
268 print(f"Test MSE: {test_mse :.2f}")
269

270

271 ’’’
272 Let
273 Us
274 Work
275 on
276 Classification
277 ’’’
278 #load preexisting dataset
279 # Load the dataset from a text file
280 data = np.loadtxt(’./data/data_w3_ex2.csv’, delimiter=’,’)
281

282 # Split the inputs and outputs into separate arrays

17

283 x_bc = data [:,:-1]
284 y_bc = data[:,-1]
285

286 # Convert y into 2-D because the commands later will require it (x
is already 2-D)

287 y_bc = np.expand_dims(y_bc , axis =1)
288

289 #Split the dataset
290 from sklearn.model_selection import train_test_split
291

292 # Get 60% of the dataset as the training set. Put the remaining 40%
in temporary variables.

293 x_bc_train , x_, y_bc_train , y_ = train_test_split(x_bc , y_bc ,
test_size =0.40, random_state =1)

294

295 # Split the 40% subset above into two: one half for cross validation
and the other for the test set

296 x_bc_cv , x_bc_test , y_bc_cv , y_bc_test = train_test_split(x_ , y_,
test_size =0.50, random_state =1)

297

298 # Delete temporary variables
299 del x_, y_
300

301 # Scale the features
302

303 # Initialize the class
304 scaler_linear = StandardScaler ()
305

306 # Compute the mean and standard deviation of the training set then
transform it

307 x_bc_train_scaled = scaler_linear.fit_transform(x_bc_train)
308 x_bc_cv_scaled = scaler_linear.transform(x_bc_cv)
309 x_bc_test_scaled = scaler_linear.transform(x_bc_test)
310

311 #Evaluate the error
312 # Sample model output
313 probabilities = np.array ([0.2, 0.6, 0.7, 0.3, 0.8])
314

315 # Apply a threshold to the model output. If greater than 0.5, set to
1. Else 0.

316 predictions = np.where(probabilities >= 0.5, 1, 0)
317

318 # Ground truth labels
319 ground_truth = np.array ([1, 1, 1, 1, 1])
320

321 # Initialize counter for misclassified data
322 misclassified = 0
323

324 # Get number of predictions
325 num_predictions = len(predictions)
326

327 # Loop over each prediction
328 for i in range(num_predictions):
329

18

330 # Check if it matches the ground truth
331 if predictions[i] != ground_truth[i]:
332

333 # Add one to the counter if the prediction is wrong
334 misclassified += 1
335

336 # Compute the fraction of the data that the model misclassified
337 fraction_error = misclassified/num_predictions
338

339 #building and training the model
340 # Initialize lists that will contain the errors for each model
341 nn_train_error = []
342 nn_cv_error = []
343

344 # Build the models
345 models_bc = utils.build_models ()
346

347 # Loop over each model
348 for model in models_bc:
349

350 # Setup the loss and optimizer
351 model.compile(
352 loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
353 optimizer=tf.keras.optimizers.Adam(learning_rate =0.01) ,
354)
355

356 print(f"Training {model.name }...")
357

358 # Train the model
359 model.fit(
360 x_bc_train_scaled , y_bc_train ,
361 epochs =200,
362 verbose =0
363)
364

365 print("Done!\n")
366

367 # Set the threshold for classification
368 threshold = 0.5
369

370 # Record the fraction of misclassified examples for the training
set

371 yhat = model.predict(x_bc_train_scaled)
372 yhat = tf.math.sigmoid(yhat)
373 yhat = np.where(yhat >= threshold , 1, 0)
374 train_error = np.mean(yhat != y_bc_train)
375 nn_train_error.append(train_error)
376

377 # Record the fraction of misclassified examples for the cross
validation set

378 yhat = model.predict(x_bc_cv_scaled)
379 yhat = tf.math.sigmoid(yhat)
380 yhat = np.where(yhat >= threshold , 1, 0)
381 cv_error = np.mean(yhat != y_bc_cv)

19

382 nn_cv_error.append(cv_error)
383

384 # Print the result
385 for model_num in range(len(nn_train_error)):
386 print(
387 f"Model {model_num +1}: Training Set Classification Error: {

nn_train_error[model_num]:.5f}, " +
388 f"CV Set Classification Error: {nn_cv_error[model_num]:.5f}"
389)
390

391 #pick
392 # Select the model with the lowest error
393 model_num = 3
394

395 # Compute the test error
396 yhat = models_bc[model_num -1]. predict(x_bc_test_scaled)
397 yhat = tf.math.sigmoid(yhat)
398 yhat = np.where(yhat >= threshold , 1, 0)
399 nn_test_error = np.mean(yhat != y_bc_test)
400

401 print(f"Selected Model: {model_num}")
402 print(f"Training Set Classification Error: {nn_train_error[model_num

-1]:.4f}")
403 print(f"CV Set Classification Error: {nn_cv_error[model_num -1]:.4f}"

)
404 print(f"Test Set Classification Error: {nn_test_error :.4f}")

Looking at the bias and variance of a model may allow us to understand why it is not per-
forming as we want to. Identifying high bias is straightforward: the cost of the training set
will be high, as well as the cross–validation cost. If the cost of the training set is low but the
cost of the cross–validation set is high, it may be a case of high variance.
In general, when you fit a higher order polynomial, the error of the training set will decrease.
On the other hand, the cost of the cross–validation set will be a concave function: the mini-
mum point will be a polynomial number that is not the highest but also not the lowest. Our
objective is to find this value.
Cross–validation can also help us choose a good value of the regularisation parameter λ.
We will calculate the cost of the cross–validation set using several lambda values within a
range. The value that results in the lowest value for lambda is the ideal one for our model.

When judging if the training error is high, it’s useful to establish a baseline level of per-
formance. A common way of doing this is to measure how well humans normally perform,
how competing algorithms perform, and guess based on experience. Look at the gaps be-
tween the baseline performance, the training error, and the cross–validation error. If the
former is big, it is a bias problem. If the latter is big, it is a variance problem. Looking at
these numbers, we can intuitively get a sense of the type of problem we have.

Learning curves are a way to understand how the learning algorithm is doing as a func-
tion of the amount of experience it has (e.g. the number of training examples it has). An
interesting relation is that, the larger the training set size, the smaller the cross–validation

20

error and the larger the training error. Intuitively, the larger the training set, the more dif-
ficult it is for a function to fit all the samples perfectly. Another important fact is that the
cross–validation error tends to be higher than the training error.

Troubleshooting:

• Get more training examples: helps fix high variance.

• Try smaller sets of features: too many features gives too much flexibility for your model
to become very specific to the data. This helps to fix high variance.

• Try getting additional features: helps fix high bias.

• Try adding polynomial features: helps fix high bias.

• Try decreasingλ: means pay less attention to the regularisation term and more atten-
tion to the cost function, so it fixes bias.

• Try increasing λ: the converse of the above — forces the algorithm to fit a smoother,
less wiggly line; fixes high variance.

One of the reasons why neural networks have been so successful is how they present new
ways for us to deal with variance and bias. Normally, we have a bias–variance tradeoff: you
have to balance the complexity that is the degree of the polynomial and the regularisation
parameter. Neural networks allow us to exit this dilemma; if bias is high, just use a bigger
neural network (more hidden layers or more hidden units per layer). If the variance is high,
get more data and retrain the model. There are however limitations to this method, since a
larger neural network is computationally expensive. Furthermore, it is sometimes not easy
to get more data.
With proper regularisation, the risk of overfitting as the neural network grows larger does
not increase.

3.1 Machine Learning Development Process

Iterative Loop of Machine Learning Development:
Usually you start by deciding what is the overall architecture of your system. Given those
decisions, you implement and train the model. The next step is to look at diagnostics (e.g.
bias, variance), and based on the results of the diagnostics, go back to step one and revise
the overall architecture. It often takes several iterations of this loop for an acceptable model
to be produced.
Another diagnostics you can look at is error analysis: manually examine examples that the
algorithm has misclassified, group them based on common traits, and see which big issues
deserve your focus.
Adding Data:
When training machine learning algorithms, sometimes it’s tempting to just add more data,
but this is a process that is costly in both time and other resources. A better approach is to

21

add more data of the types where error analysis have indicated it might help.
A way to obtain new data when it is hard to get completely new samples is through a tech-
nique named data augmentation, which involves modifying an existing training example
(e.g. distorting, transforming, zooming, cropping) to create a new example that helps the
algorithm improve its capabilities to identify a particular label. It is not helpful to just add
random noise; you have to make sure that after adding the noise you still end up with some-
thing similar enough to what you want.
A similar technique is data synthesis, which is creating brand new examples as opposed to
modifying existing ones. Another powerful technique is transfer learning. The key idea be-
hind it is to take data from a totally different, barely related task and process it through a
neural network in a way that improves your model’s performance. This does not apply to
everything, but can be powerful when it does.
Copy a pre–existing, trained neural network and only change the output layer. Transfer
learning means using the parameters of the already trained network as starting points for
the training of your neural network. Usually, transfer learning involves two possibilities,
only training the output layer parameters (ideal when not much data is available) or train-
ing all parameters but use the previous weights as a starting point (ideal when a large dataset
is available). Often, this is also called supervised pre–training.
An important restriction for transfer learning is that the pre–trained model must use the
same input type. There are two key steps in the process:

1. Download neural network parameters pretrained on a large dataset with the same
input type as your application

2. Further train (fine tune) the network on your own data

The full cycle of a machine learning project:

1. Scope project: define what you want to do.

2. Collect data: define and collect the data.

3. Train model: training, error analysis, iterative improvement. The improvement may
involve collecting more data.

4. Deploy in production environment: also involves monitoring and maintain the sys-
tem. A common way to deploy a model is to host it on an inference server. Any app
or service that will utilise the machine learning model will perform an API call to the
server and receive the inference.

3.2 Skewed Datasets

A skewed dataset is one where significantly more elements belong to one category than the
other, usual error metrics like accuracy are not adequate. A common pair of error metrics
are precision and recall. Precision involves counting how many examples in each class were
wrongly and correctly classified. In binary classification, the terms true positive, false posi-
tive, true negative, and false negative are commonly used; The true or false refer to whether

22

or not the output label matches to the actual label the sample is. Precision is measured in
terms of a particular category as true positives

true positives+false positives . Recall refers to what percentage of
all the elements of a category in your dataset did your algorithm correctly classify into the
right category. This is expressed as True positives

True positives + False negatives .
High precision that if the algorithm outputs a positive, it is likely to be a correct result; high
recall that if the element is a member of the class, the algorithm is likely to correctly classify
it. Precision is increased when the threshhold is increased (e.g. requiring 0.9 confidence
before outputting a positive). This, however, reduces the recall. The opposite is also true:
lowering the threshhold increases the recall but reduces the precision. If you want to au-
tomatically compare precision and recall is using the F1 score, a combination of precision
and recall that pays more attention to whichever value is lower. This is also known in math-
ematics as the harmonic mean.

4 Decision Trees

Every type we receive a new example, the algorithm will start at the root, and then based
on a certain computation, it will go down to the child node up until it gets to a leaf, which
allows the model to perform an inference. The inner nodes of a decision tree are called de-
cision nodes. Several decision trees can be created for a specific inference process; we are
going to learn of an algorithm that will decide this for us.
Given a set of training examples, the first thing we need to do is to choose a feature to place
at the root node. Then, we will analyse the examples that get classified into each decision
node, and create another layer that allows us to further subdivide the set. Some key deci-
sions are how to choose what feature to split on at each node — our goal is to maximise
purity, which results on getting a set that ends in the most positive classifications. The algo-
rithm will iteratively choose which feature to use by comparing different possibilities and
checking their purity. Another important decision is, when do we stop splitting? This is usu-
ally decided when either a node is 100% one class, when purity improvements are below a
threshold, when the number of examples in a node is below a threshold, and when splitting
the node results in the tree exceeding a maximum depth.
Entropy (H) is commonly used to measure impurity; the smaller the entropy function is, the
better. The way this is calculated when there are only two categories is H (p1) =−p1l o g2(p1)−
p0l o g2(p0), where p1 is the fraction of examples belonging to one category and p0 = 1−p1.
Other functions, such as the Gini criteria also work, but we will focus on entropy in these
notes.
The way we choose what feature to split on at a node will be based on which choice reduces
entropy the most. We compute the weighted average of the entropy across all the children
nodes resulting from the split based on a feature, and we compare this value across different
possible features. The information gain is the measure of how much entropy was reduced
after a given split; this is computed by subtracting the weighted sum of the entropy in all
the children nodes from the entropy of the parent node.
The overall process of building a decision tree looks like

1. Start with all examples at the root node

23

2. Calculate the information gain for all possible features and pick the one with the high-
est information gain

3. Split the dataset according to the selected feature and create the branches of the tree

4. Keep repeating the process until the stopping criteria is met

One–hot encoding can help us in the case where features have more than two possible val-
ues. As opposed to just creating n branches, where n is the amount of possible values the
features have, we will create n binary features. For instance, if the feature colour can take
the values red, blue, and green, we will create three features:red or not red, blue or not blue,
and green or not green. This allows us to preserve the morphology of a binary tree!
When features can take a continuous value (as opposed to discrete values), a way of working
around them on decision trees is to decide a threshold, and classify examples on whether
or not they are larger than such threshold. This split is also decided based on which one can
give you the highest information gain.
Regression can also be achieved through decision trees; average the continuous value of
every element in each of the leaves and this will be your prediction for every other element
that ends there. The rationale applied when choosing a split is different for regression trees
however: instead of trying to reduce entropy, our goal is to reduce the variance between all
the continuous labels of the elements of each subgroup. Similarly to the case of classifica-
tion through decision trees, we have to compute the weighted sum of the variance of each
branch that arises from the split so that we can compare them accurately and subtract this
from the variance of the root node.
If we train several decision trees, an ensemble of decision trees, we get a much better perfor-
mance; a single tree is highly sensitive to small changes in the data. The core idea behind
the ensemble of trees is having each of them process the input data and output a prediction,
so that the model outputs the most "popular" label. Having several trees "vote" instead of
just outputting what one says is better because it makes the overall algorithm less sensitive
to what a single tree may do.
Sampling with replacement is a technique used to generate all these plausible but slightly
different decision trees: we will construct slightly different training sets by continuously
picking a random item from the original set until we have a new set of the same size as the
original one. The replacement part is key — otherwise, it is just the same elements in dif-
ferent order.
So, given a training set of size m , we will use sampling with replacement to create a new
training set of size m and train a decision tree on the new dataset. These two steps must
be repeated an n amount of times. Having built the ensemble, you just provide the input
to all the trees and have them vote on the correct output label. Sometimes you end up with
the same root split feature for a large percentage of the trees; to prevent this, a further ran-
domising elemetn is introduced: at each node, when choosing a feature to use to split, if
k features are available, pick a random subset of j < k features and allow the algorithm to
only choose from that subset of features. A typical choice of j is

p
k

An even stronger algorithm is XGBoost, eXtreme Gradient Boosing. The algorithm behind
it is similar to the one for random tree ensembles:

24

1. Given training set of size m

2. Repeat for B times:

a) Use sampling with replacement to create a new training set of size m
Instead of picking from all examples with equal (1

m) probability, make it more
likely to pick misclassified examples from previously trained trees

b) Train a decision tree on the new dataset

XGBoost is hard to implement, so most practitioners just do the following:

1

2 #for classificatioin
3 from xgboost import XGBClassifier
4

5 model = XGBClassifier ()
6

7 model.fit(X_train , y_train)
8 y_pred = model.predict(X_test)
9

10 #for regression
11 from xgboost import XGBRegressor
12

13 model = XGBRegressor ()
14

15 model.fit(X_train , y_train)
16 y_pred = model.predict(X_test)

Decision Trees Neural Networks
Work well on tabular/structured data Good for all types of data (images, audio, text)
Faster to train Slower
Small ones are human-interpretable Works with transfer learning

Lastly, observe how to implement a decision tree from scratch below:

1 import numpy as np
2 from public_tests import *
3 from utils import *
4

5 #Given hot -encoded dataset
6 X_train = np.array

([[1,1,1],[1,0,1],[1,0,0],[1,0,0],[1,1,1],[0,1,1],[0,0,0],[1,0,1],[0,1,0],[1,0,0]])

7 y_train = np.array ([1,1,0,0,1,0,0,1,1,0])
8

9 def compute_entropy(y):
10 """
11 Computes the entropy for
12

13 Args:
14 y (ndarray): Numpy array indicating whether each example at a

node is

25

15 edible (‘1‘) or poisonous (‘0‘)
16

17 Returns:
18 entropy (float): Entropy at that node
19

20 """
21 entropy = 0.
22

23 if len(y) != 0:
24 p1 = len(y[y == 1]) / len(y)
25 # For p1 = 0 and 1, set the entropy to 0 (to handle 0log0)
26 if p1 != 0 and p1 != 1:
27 entropy = -p1 * np.log2(p1) - (1 - p1) * np.log2(1 - p1)
28 else:
29 entropy = 0
30

31 return entropy
32

33 def split_dataset(X, node_indices , feature):
34 """
35 Splits the data at the given node into
36 left and right branches
37

38 Args:
39 X (ndarray): Data matrix of shape(n_samples ,

n_features)
40 node_indices (list): List containing the active indices.

I.e, the samples being considered at this step.
41 feature (int): Index of feature to split on
42

43 Returns:
44 left_indices (list): Indices with feature value == 1
45 right_indices (list): Indices with feature value == 0
46 """
47

48 left_indices = []
49 right_indices = []
50

51 for i in node_indices:
52 if X[i][feature] == 1:
53 left_indices.append(i)
54 else:
55 right_indices.append(i)
56 return left_indices , right_indices
57

58 def compute_information_gain(X, y, node_indices , feature):
59

60 """
61 Compute the information of splitting the node on a given feature
62

63 Args:
64 X (ndarray): Data matrix of shape(n_samples ,

n_features)
65 y (array like): list or ndarray with n_samples

26

containing the target variable
66 node_indices (ndarray): List containing the active indices.

I.e, the samples being considered in this step.
67

68 Returns:
69 cost (float): Cost computed
70

71 """
72 # Split dataset
73 left_indices , right_indices = split_dataset(X, node_indices ,

feature)
74

75 # Some useful variables
76 X_node , y_node = X[node_indices], y[node_indices]
77 X_left , y_left = X[left_indices], y[left_indices]
78 X_right , y_right = X[right_indices], y[right_indices]
79 information_gain = 0
80

81 node_entropy = compute_entropy(y_node)
82 left_entropy = compute_entropy(y_left)
83 right_entropy = compute_entropy(y_right)
84

85 # Weights
86 w_left = len(X_left) / len(X_node)
87 w_right = len(X_right) / len(X_node)
88

89 #Weighted entropy
90 weighted_entropy = w_left * left_entropy + w_right *

right_entropy
91

92 #Information gain
93 information_gain = node_entropy - weighted_entropy
94

95 return information_gain
96

97

98 def get_best_split(X, y, node_indices):
99 """

100 Returns the optimal feature and threshold value
101 to split the node data
102

103 Args:
104 X (ndarray): Data matrix of shape(n_samples ,

n_features)
105 y (array like): list or ndarray with n_samples

containing the target variable
106 node_indices (ndarray): List containing the active indices.

I.e, the samples being considered in this step.
107

108 Returns:
109 best_feature (int): The index of the best feature to

split
110 """
111

27

112 # Some useful variables
113 num_features = X.shape [1]
114 best_feature = -1
115 max_info_gain =0
116 for feature in range(num_features):
117 info_gain = compute_information_gain(X, y, node_indices ,

feature)
118 if info_gain > max_info_gain:
119 max_info_gain = info_gain
120 best_feature = feature
121

122 return best_feature
123

124

125 tree = []
126

127 def build_tree_recursive(X, y, node_indices , branch_name , max_depth ,
current_depth):

128 """
129 Build a tree using the recursive algorithm that split the

dataset into 2 subgroups at each node.
130 This function just prints the tree.
131

132 Args:
133 X (ndarray): Data matrix of shape(n_samples ,

n_features)
134 y (array like): list or ndarray with n_samples

containing the target variable
135 node_indices (ndarray): List containing the active indices.

I.e, the samples being considered in this step.
136 branch_name (string): Name of the branch. [’Root ’, ’Left ’,

’Right ’]
137 max_depth (int): Max depth of the resulting tree.
138 current_depth (int): Current depth. Parameter used during

recursive call.
139

140 """
141

142 # Maximum depth reached - stop splitting
143 if current_depth == max_depth:
144 formatting = " "*current_depth + "-"*current_depth
145 print(formatting , "%s leaf node with indices" % branch_name ,

node_indices)
146 return
147

148 # Otherwise , get best split and split the data
149 # Get the best feature and threshold at this node
150 best_feature = get_best_split(X, y, node_indices)
151

152 formatting = "-"*current_depth
153 print("%s Depth %d, %s: Split on feature: %d" % (formatting ,

current_depth , branch_name , best_feature))
154

155 # Split the dataset at the best feature

28

156 left_indices , right_indices = split_dataset(X, node_indices ,
best_feature)

157 tree.append ((left_indices , right_indices , best_feature))
158

159 # continue splitting the left and the right child. Increment
current depth

160 build_tree_recursive(X, y, left_indices , "Left", max_depth ,
current_depth +1)

161 build_tree_recursive(X, y, right_indices , "Right", max_depth ,
current_depth +1)

162

163

164 build_tree_recursive(X_train , y_train , root_indices , "Root",
max_depth=2, current_depth =0)

165 generate_tree_viz(root_indices , y_train , tree)

29

