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Introduction

The concept of system is extremely relevant in the course because we are handling systems —
which can get very complex as we increase the number of components. When you design such systems,
you need to consider all relevant trade–offs and make sure that the system is correct and optimal. In
summary, a digital system is an electronic system that operates on a digital abstraction, as opposed to
an analog system. This means that the system operates on discrete values instead of continuous ones.
In the physical world, quantities occur mostly as continuous analog values, thus building systems
that follow this convention is intuitive. The issue with this is that not only are the values these
systems handle continuous, but the time they are processed in is also continuous. Since the exact
value of a signal is needed, any degradation of the signal will be reflected in the output. This is
why analog systems are very sensitive to noise, such as interference from outside the system (e.g.
radio frequency interference), noise within the system (thermo noise, shot noise, etc.), and noise from
non–ideal electronic components (e.g. resistors, capacitors, degradation of materials, etc.). On top
of that, it is difficult to store and process any value in continuous time, especially due to the effect
previous signals have on the current signal (see echo cancellation, reverb...). Lastly, it is a challenge to
transport continuous signals because they are sensitive to degradation over time and space.
Digital systems, on the other hand, operate on discrete values, which are represented by a finite
number of bits. This means that the system operates on a finite number of states, and the values are
processed in discrete time. This means that the exact value of a signal is not needed, but rather the
range of values that the signal can take. This is why digital systems are less sensitive to noise, and can
be made arbitrarily accurate by increasing the number of bits. On top of that, it is easy to store and
process any value. These systems work with discrete values and discrete time.
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Check out Quantization and sampling

Analog data is turned discreet through quantization. This is done by sampling (obtaining
data at a discrete time or space) the analog signal at a certain rate, and then rounding the value
to the nearest discrete value. A way to see this is that sampling is making the x–axis (time)
discrete, whereas quantization is the process of making the y–axis (value) discrete.

It is possible to work with analog systems, but digital ones are preferred because:

• Discrete values are easy to store and transport, especially since they don’t face degradation over
time and space

• Discrete values are easy to process, since they can be represented by a finite number of bits

• These values enable very powerful and complicated processing of the input (e.g. encryption,
compression, ...)

• These values are less sensitive to interference and noise

However, these systems have issues:

• Garbage in, garbage out: if the input is not correct, the output will not be correct. That is why
the way sampling and quantization are performed is extremely important

• Relatively slower than analog systems in standard circuit implementations

• Possible loss of information when sampling data

Check out Discrete systems

Systems that operate on discrete values can function on either discrete or continuous time
unit. If it is the former, it tends to operate exclusively on combinational logic. If it is the latter,
it tends to operate on sequential logic.

Combinational Circuits
Logic gates are the building blocks of combinational circuits. Essentially, logic gates operate on

binary values, perform a simple operation, and output a single binary value.

Check out Binary Values

In this course, we will work with a binary digital abstraction, usually denoted as TRUE and
FALSE, high and low, and 1 and 0. We can define the first element in any way we want as long as
its value does not overlap with the second element. Binary abstractions are manipulable through
Boolean algebra.

Let us look at the most common logic gates in more detail:

• AND:
Its output is high only when all the inputs are high. Its truth table is shown in Table 1.1.
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A B A · B

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.1: Truth table for AND gate

The AND operation is performed like an ordinary multiplication in linear algebra (assuming the
only possible values are 1 and 0). The AND gate is also called a product gate. Normally it is
represented by a dot, as y = a · b.

• OR:
Its output is high when at least one of the inputs is high. Its truth table is shown in Table 1.2.

A B A + B

0 0 0
0 1 1
1 0 1
1 1 1

Table 1.2: Truth table for OR gate

The OR operation is performed like an ordinary addition in linear algebra (assuming the only
possible values are 1 and 0). The OR gate is also called a sum gate. Normally it is represented
by a plus sign, as y = a + b.

• NOT:
Its output is the opposite of the input. Its truth table is shown in Table 1.3.

A A

0 1
1 0

Table 1.3: Truth table for NOT gate

The NOT gate is also called an inverter. Normally it is represented by a bar over the input, as
y = a.

• NAND:
Its output is the opposite of the AND gate. Its truth table is shown in Table 1.4.

A B A · B

0 0 1
0 1 1
1 0 1
1 1 0

Table 1.4: Truth table for NAND gate
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The NAND gate is also called a negative product gate. Normally it is represented by a dot with
a bar over it, as y = a · b.

• NOR:
Its output is the opposite of the OR gate. Its truth table is shown in Table 1.5.

A B A + B

0 0 1
0 1 0
1 0 0
1 1 0

Table 1.5: Truth table for NOR gate

The NOR gate is also called a negative sum gate. Normally it is represented by a plus sign with
a bar over it, as y = a + b.

• XOR:
Its output is high when the inputs are different. Its truth table is shown in Table 1.6.

A B A ⊕ B

0 0 0
0 1 1
1 0 1
1 1 0

Table 1.6: Truth table for XOR gate

The XOR gate is also called an exclusive OR gate. Normally it is represented by a plus sign
with a circle around it, as y = a ⊕ b.

These gates are represented in circuits as as:

Figure 1.1: Schematics of logic gates, sourced from this website

Check out Extending the gates to more than two inputs

The gates can be, for the most part, intuitively extended to more than two inputs. For
instance, the AND gate can be extended only returning positive if all n inputs are positive. The
OR gate can be extended only returning positive if at least one of the n inputs is positive. The
debate arises when it comes to the gate XOR: should it return positive if an odd number of inputs
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is positive, or if exactly one input is positive? A lot has been talked about this topic, as this
website attests. As a fun fact, this was part of an assignment question on this iteration of the
course, and the solution expected of us was the one where the XOR gate returns positive if and
only if an odd number of inputs is positive.

Using these gates, we can build combinational functions, which are functions that take binary
inputs and produce a binary output. For example, the function y = a · b + a · b. These functions must
meet some conditions, such as

• All enclosing functions are combinational

• There is no loop in the connection

• Every node is either an input or connects to exactly one output

The three representations that we previously saw are the truth table, the Boolean expression,
and the schematic. They are equivalent and can be converted from one to the other. Truth table
is the only unique representation, which means that there is only one truth table for each function.
However, there are multiple possible Boolean expressions and schematics for a single function.
Converting from schematics to Boolean expressions is straightforward:

1. Label all inputs

2. Repeat until all nodes labeled:

• For all gates G with all inputs labelled:
compute and label output of G

Converting from a boolean expression to schematic is also direct: it is the inverse of the previous
process. You can use the following algorithm:

1. Make the entire expression the output of a gate

2. Until you have reached the single letter inputs, do:

• IF:
There are any plus signs, make each of the terms separated by the sign the inputs of an OR
gate
ELSE IF:
There are any dots or products, make each of the terms multiplied the inputs of an AND gate

• Each input of these extra gates you have created is the new entire expression you have to
deconstruct

Check out Precedence

The precedence of the operators is as follows:

1. ()

2. NOT

3. AND

4. OR
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This means that if you have an expression such as y = a + b · c, you should first compute b · c and
then add a to it. This is because the AND operator has precedence over the OR operator. When
deconstructing an expression, this precendece is inversed.

Circuit components can be grouped into sub–circuits known as blocks, which can simplify the circuit
and make it more readable. In a logic circuit, each function is represented by a block (also known as
module) and reused multiple times.
The process of converting from a truth table to a boolean expression is somewhat more complicated.
Firstly, it is important to introduce the term minterm, which is a product that involves all the input
variables (regardless of there being a negation or not). In a truth table, each row represents a minterm.
The boolean expression will be the sum of all the minterms that have a 1 in the output, something
called sum of products.
Converting from a boolean expression to a truth table itself is trivial: given an expression in its
canonical sum of products form, you just have to put a 1 in each row that corresponds to a minterm.
The tricky aspect is getting the expression into the SOP form in the first place.

Check out Canonical Expressions

Boolean expressions can be expressed in many ways. Canonical expressions eliminate this
ambiguity by imposing a standard form. There are main forms of canonical expressions:

• Sum of products (SOP): a sum of products of literals. Canonically, it may be negated
but it should have no parentheses.

• Product of sums (POS): a product of sums of literals.

Canonical expressions must not contain any parentheses.

1.0.1 Boolean Algebra

Boolean algebra is a set of rules that allow us to manipulate Boolean expressions. This branch of
algebra is based on a series of axioms, mainly: T

Axiom Dual Description
B = 0 if B ̸= 1 B = 1 if B ̸= 0 Binary Field

0 = 1 1 = 0 Complement/NOT
0 · 0 = 0 1 + 1 = 1 Annihilator/ AND OR
1 · 1 = 1 0 + 0 = 0 Identity/ AND OR
0 · 1 = 0 1 + 0 = 1 Null/ AND OR

Table 1.7: Important axioms of Boolean algebra

If you replace the AND operator with the OR operator and replace every 1 with a 0, the axiom still
holds true. This is what is known as the dual of the axiom.
Similarly, there are certain useful theorems we apply when handling operations involving a single
variable:
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Theorem Dual Description
B · 1 = B B + 0 = B Identity
B · 0 = 0 B + 1 = 1 Null

B · B = B B + B = B Idempotent
B · B = 0 B + B = 1 Complement

Table 1.8: Important theorems of Boolean algebra

Check out De Morgan’s Laws

De Morgan’s laws are a set of rules that allow us to manipulate Boolean expressions. They
are as follows:

• A + B = A · B

• A · B = A + B

In short, break the bar, change the operator

Now, let us look at some multivariable theorems:

Theorem Dual Description
B · C = C · B B + C = C + B Commutative

(B · C) · D = B · (C · D) (B + C) + D = B + (C + D) Associative
B · (C + D) = (B · C) + (B · D) B + (C · D) = (B + C) · (B + D) Distributive

B · (B + C) = B B + (B · C) = B Absorption
(B · C) + (B · C) = B (B + C) · (B + C) = B Combining

(B · C) + (B · D) + (C · D) = B · C + B · D (B + C) · (B + D) · (C + D) = B + C · (B + D) Consensus

Table 1.9: Important theorems of Boolean algebra - Multivariable

1.0.2 Circuit Schematics

Circuit schematics are a way to represent circuits in a more visual way. They are composed of
logic gates and wires. Logic gates are represented by their symbols, and wires are represented by
lines. Usually, some conventions are followed:

• Inputs on the left

• Outputs on the right

• Gates flow from left to right

• Straight wires are preferred

• Wires always connect at a T junction

• Wires crossing without a dot do not connect
If possible, it is ideal to minimise logic circuits, since the higher the number of logic gates, the larger
the area, the power consumption, and the delay of the circuit. This minimisation is usually achieved
either via Boolean algebra or via Karnaugh maps. The latter refers to a method of representing
the truth values of a function in a wat that allows us to identify the minterms of an expression. Based
on those, we can simplify the expression.
The following steps allow us to express a truth table as a Karnaugh map:
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1. Draw a grid with the number of rows and columns being the number of variables

2. Label the rows and columns with the binary values of the variables

3. Fill in the grid with the output values of the function

4. Group the 1s in the grid in groups of 2n cells, where n is a positive integer. Note:

• The groups can be horizontal or vertical

• The groups can wrap around the grid

• The groups can overlap

• Make the largest groups possible

5. For each group, write the product of the variables that are constant in the group

6. Sum all the products

7. Simplify the expression

Here is an example of this method:

Figure 1.2: Example of Karnaugh map, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

Here is how the simplification is carried out:

Figure 1.3: Example of Karnaugh map simplification, sourced from the slides on Combinational Logic
by Professor Hayden So of the University of Hong Kong
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Combinational Building Blocks & Arithmetic
Circuits

When building a system, we can follow one of two approaches:

• Top–down: we start with the overall system requirements and break the system down into
smaller and smaller subsystems until we reach the level of individual components (unbreakable
components).

• Bottom–up: we start with the individual components and build them up into larger and larger
subsystems until we reach the level of the overall system.

These unbreakable components are called building blocks, the basic components that we use to build
our system. Let us look at some of the most common circuit blocks:

• Multiplexers: a multiplexer (mux) is a circuit that has multiple inputs and a single output. It
selects one of its inputs to output through a set of select inputs. The number of select inputs
determines the number of inputs the multiplexer has. The number of select inputs is n, the
number of inputs is 2n, and the number of outputs is 1.

Figure 1.4: Schematic of a multiplexer, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

A way to implement a mux is to treat it as simple combinational logic; you determine its truth
table and then use logic gates to implement such truth table.
When there are more than one select inputs, we usually represent them through bus notation;
this means that we represent a group of wire signals as a single multiple–bit wire signal. For
example, a 32 bit signal X would be represented as X(31 downto 0) or X[31:0]. If we want to
refer to a particular bit of the bus, we can use the notation X[2:0] (including bits 1, 2, 3) or
X[0]. In this course, we denote the leftmost bit with the largest index in a bus. When it comes
to 4–to–1 muxes, they can be implemented in two ways:

– As a big combinational circuit, where you express the desired function as a truth table and
then proceed to implement it using logic gates
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– Using smaller subcircuits (2–to–1 muxes), such as in

Figure 1.5: Schematic of a 4–to–1 mux, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

Check out VHDL Muxes

VHDL, also known as VHSIC Hardware Description Language, is a language used
to describe digital and mixed–signal systems as well as their behaviour. It is the main
language that we will use in this course. If you want to express a mux in VHDL, you should
express it in its expected form:

1 architecture behav of mux2 is
2 begin
3 Y <= A when (S = ’0’) else B;
4 end behav ;
5

Similarly, buses are expressed as arrays of bits:
1 signal X: std_logic_vector (31 downto 0)
2 --refer to individual bits as
3 X(0) --bit 0
4 X(18 downto 0) --bits 0 to 18
5

4:1 muxes can be expressed in many ways, such as:
1 --using a big combinational circuit
2 process (sel , A, B, C, D)
3 begin
4 case sel is
5 when "00" => Y <= A;
6 when "01" => Y <= B;
7 when "10" => Y <= C;
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8 when "11" => Y <= D;
9 when others => Y <= A;

10 end case;
11 end process ;
12 --using smaller subcircuits
13 architecture behav of mux4 is
14 component mux2
15 port (A, B, S: in std_logic ;
16 Y: out std_logic );
17 end component ;
18 begin
19 mux2_1 : mux2 port map (A, B, S(0) , Y(0));
20 mux2_2 : mux2 port map (C, D, S(0) , Y(1));
21 mux2_3 : mux2 port map (Y(0) , Y(1) , S(1) , Y);
22 end behav ;
23

• Demultiplexers: a demultiplexer (demux) is a circuit that has a single input and multiple
outputs. It selects one of its outputs to output through a set of select inputs. The number of
select inputs determines the number of outputs the demultiplexer has. The number of select
inputs is n, the number of outputs is 2n, and the number of inputs is 1.

1.0.3 Binary Numbers

In Computer Engineering, two numbering schemes appear frequently: binary, which represents
numbers in base 2 and hexadecimal, which represents numbers in base 16. The conversion between
these two is easy, so hexadecimal is often used as a shorthand for the binary system.
In order to convert from decimal to binary/hexadecimal, we can use the following algorithm:

1. Divide the number by the base (2 or 16)

2. End when the remainder is smaller than the base

3. The remainders form the number in the resulting system when counted from the bottom

When we want to convert from binary/hex to decimal, we use the formula

n−1∑
i=0

Bidi

where B is the base, n is the number of digits, and di is the value of the digit at position i. The
right–most digit is at position 0.

Check out Signed and unsigned numbers

Binary numbers can be either signed or unsigned. Unsigned numbers are simply non–negative
binary numbers using their natural binary representations. They represent equally spaced
integers on the number line. Following this scheme, an n–bit string can represent the numbers in
the range [0, 2n − 1]. For example, an 8–bit string can represent the numbers in the range [0, 255].
However, this scheme is unable to represent negative numbers. This shortcoming is addressed by
the signed number representation known as 2’s complement. In this scheme, the left–most
bit is used to represent the sign of the number. If the bit is 0, the number is positive. If the
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bit is 1, the number is negative. The remaining bits represent the magnitude of the number. In
digital circuits, the negative of any number can be found by flipping all the bits and adding a
1. For instance, 388 in binary is 0000000110000100. Flipping all the bits and adding a 1 gives
us 1111111001111100, which is the binary representation of −388. The range of an n–bit string
using this scheme is of [−2n−1, 2n−1 − 1] — which is asymmetric! The following formula returns
the value of any 2’s complement bitstring:

−2n−1 +
n−2∑
i=0

2idi

The conversion between binary and hexadecimal is straightforward once we know the fact that
from right to left, each group of four bits in binary form one digit in hex.

1.0.4 Arithmetic Circuits

Binary addition is no different to regular addition—two positive integers can be added via long
addition. When implementing this operation in a circuit, we need to mind the fact that when we have
two ones being added together, there will be a carry bit, which is then added to the next column.
The half adder is a simple circuit that performs a basic addition of two 1–bit values. It generates a
carry out to the next bit if the result is 2. The truth table for this circuit is shown in Table 1.10.

A B Co S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 1.10: Truth table for half adder

Where Co stands for carry over and S stands for sum. Algebraically speaking, S = a ⊕ b and
Co = a · b.
When we are handling more than one bit, we need to consider the possibility of a carry over bit from
the bit to the right. Thus, we design a so–called full adder, which is a three–input function as per
Table 1.11.

Ci A B Co S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 1.11: Truth table for full adder

Here, S = a ⊕ b ⊕ Ci and Co = a · b + Ci · (a + b).
What if we need to add two bits — the previous carryover and the carryover from the present operation?
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Since those instances are not infrequent, we need multi–bit adders. These adders are the result of
connecting the carry output from a full adder to the carry input of the next full adder. The first full
adder has a carry input of 0. The resulting circuit is called a ripple carry adder.

Figure 1.6: Schematic of a ripple carry adder, sourced from the slides on Combinational Logic by
Professor Hayden So of the University of Hong Kong

As you can see in the image, the carry bit will be rippled across the adder from right to left.
Once we have figured this out, representing subtraction is a relatively trivial task. We can simply use
the fact that a − b = a + (−b), where −b is the two’s complement of b — as long as we can find the
negative value of a number, we can subtract it. Well, we know how to do this! We just need to simply
negate all the bits and add 1. Bit flippers can be implemented using XOR gates.

Figure 1.7: Schematic of a ripple carry subtractor (|1 = isNegative), sourced from this website

The other essential arithmetic blocks are the comparators, which determine the relationship
between two binary numbers.

• Equality: It produces a single input indicating whether A is equal to B. It is normally implemented
with a series of XOR gates as follows:
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Figure 1.8: Schematic of an equality comparator, sourced from the slides on Combinational Logic by
Professor Hayden So of the University of Hong Kong

• Less Than: Its output is positive only if A < B. A way this is performed is by computing A − B
and looking at the sign of the result. The symbol for this comparator is the one in Figure 1.9.
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Figure 1.9: Schematic of a less than comparator, sourced from the slides on Combinational Logic by
Professor Hayden So of the University of Hong Kong

• Less Than or Equal To: This can be trivially implemented by making the output of an equality
unit and that of a less than unit the inputs of an OR gate.

Then, we have shifters and rotators. Shifters are circuits that shift the bits of a binary number to
the left or to the righ, whereas rotators are circuits that rotate the bits of a binary number to the left
or to the right. Let us look at them in detail:

• Logical Shifter: It shifts the bits of a binary number to the left or right and fills all empty
spaces with zero. For instance, 11001 >> 2 means shift the number two bits to the right and
results in 00110 If it were 11001 << 2 the result would be 00100. Figure 1.10 shows the design
of this shifter, where shamt means shift amount.
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Figure 1.10: Schematic of a logical shifter, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

• Arithmetic Shifter: Same as the previous shifter, with the exception that on right shift, it fills
empty spaces with the previous most significant bit. For instance, 11001 >> 2 means shift the
number two bits to the right and results in 11110 If it were 11001 << 2 the result would still be
00100.

• Rotator: Rotates the bits. For example, 11001 ROR 2 will result in 01110.

17



Check out Multipliers and Dividers

Shifters can be used to implement multipliers and dividers. For instance, to multiply a
number by 2n, we can simply shift it n bits to the left (e.g. 00001 << 2 == 1 * 2^2). Similarly,
to divide a number by 2n, we can simply shift it n bits to the right. Multipliers form partial
products by multiplying a single digit of the multiplier with a multiplicand. Then, the shifted
partial products are summed to form the result. This comes together in the design in Figure
1.11.

Figure 1.11: Schematic of a 4x4 multiplier, sourced from the slides on Combinational Logic by
Professor Hayden So of the University of Hong Kong

In this design, the multiplier receives the multiplicand (A) and the multiplier (B) to produce
the product (P ). Each partial product is a single multiplier bit (B3, B2, B1, B0) AND the
multiplicand bits (A3, A2, A1, A0). The partial products are then shifted and added together to
produce the final product.

VHDL
As mentioned before, VHDL is a hardware description language. It refers to both the conectivity

and the function of each module in hardware. However, it is important to notice that it does not
describe how to implement each function — this is the job of the synthesis tool. When using HDL,
we need to keep in mind that we are describing hardware, not software. This means that we need
to think of the system in terms of hardware components, such as combinational logic, combinational
building blocks, registers, finite state machines... The design procedure usually follows these steps:

1. Sketch a block design of the system. Focus on what blocks are needed and how these blocks
are connected

2. Implement each block one by one

3. Put blocks together into a working system

Usually, any VHDL script contains three components:

• Entity:
It defines the interface of a module. Each module has exactly one entity. It also must indicate a
port mode for every signal it handles. Some common port modes are in, out, inout...

• Architecture:
It defines the function of an entity, the thing it is supposed to do. It is uncommon, but one entity
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may have multiple architectures; this allows the entity to have different behaviours depending on
what the tools want to do. A declaration statement must follow a specific syntax:

1 architecture <arch_name > of <entity_name > is
2 declarations ; --optional
3 begin
4 concurrent_statements ;
5 concurrent_statements ;
6 end <arch_name >;
7

It is important to note that the statements within the architecture body run concurrently, not
sequentially. This means that the order of the statements does not matter. In this course, you
will encounter three main types of concurrent statements:

– Signal Assignment:
Simple assignment refers to assigning a signal to a value. For example,

1 architecture ex1 of foo is
2 begin
3 x <= ( a and not b ) and c ;
4 y <= ( a and not b ) and not c;
5 end ex1;
6

You can also instantiate signals that only exist within the architecture, such as
1 architecture ex2 of foo is
2 signal tmp: STD_LOGIC ;
3 --this signal is a NODE in the schematic
4 begin
5 tmp <= ( a and not b );
6 x <= tmp and c ;
7 y <= tmp and not c;
8 end ex2;
9

– Component Instantiation:
This action places an instance of the component in the design, which in turns allows the
design hierarchy to be built. The same component can be instantiated multiple times;
however, each instance must have a unique name. Importantly, the component must be
declared before it is instantiated. The syntax for this is as follows:

1 --instantiate the component
2 architecture ex3 of foo is
3 -- declare the existence of the component
4 component sample is
5 port ( r : in STD_LOGIC ;
6 s : in STD_LOGIC ;
7 t : out STD_LOGIC );
8 end sample ;
9 --notice the similarity to entity declaration

10 --except for keyword component
11 signal tmp: STD_LOGIC ;
12 begin
13 G1: sample port map (a, b, tmp);
14 --this is the instantiation of the component
15 -- the nodes are connected in the order they are declared
16 -- thus a connected to r, b connected to s, tmp to t.
17
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– Process:
A process is a block of an arbitrarily long list of sequential statements. Statements within a
process describe the function of the process with sequential statements, but as a whole, the
process will be a non–sequential block of code. Synthesis tools will examine the function
described and synthesises the corresponding implementation. Importantly, every process
must declare its sensitivity list, which lists all the signals that will cause the process to
execute; which is to say that the process will not execute unless one of the signals in the
sensitivity list changes value. Take a look of this sample process:

1 architecture ex4 of foo is
2 begin
3 process ( A, B, C ) --sensitivty list
4 begin
5 Y <= ( A and not B ) and ( B or C );
6 -- Y <= C;
7 end process ;
8 end ex4;
9

Note that if we were to uncomment the line Y <= C;, the value stored in Y would be C,
because within the process, the statements are executed sequentially.
Variables can be declared inside a process; they have no physical correspondence (unlike
signals) but are temporary storage for values during the execution of the process. They are
declared as follows:

1 architecture ex5 of foo is
2 begin
3 process ( A, B, C ) --sensitivty list
4 variable tmp: STD_LOGIC ;
5 begin
6 tmp := ( A and not B ) and ( B or C );
7 Y <= tmp;
8 end process ;
9 end ex5;

10

• Library Packages:
The library keyword loads predefined libraries while the use keyword specifies which libraries
to use. Some common libraries are STD_LOGIC_1164 for logic operations, NUMERIC_STD for signed
and unsigned arithmetic, among others.

This library contains two common data types, the single bit std_logic and the multi–bit std_logic_vector.
The former is used to represent a single bit, whereas the latter is used to represent a bus of bits. This
library models the behaviour of real wire and provides values such as 0 (forces a 0), 1 (forces a 1), z
(high impedance), x (unknown), u (uninitialized), − (don’t care).
Here is a sample program:

1 --Full adder
2

3 --Libraries
4 library IEEE;
5 use IEEE. std_logic_1164 .all;
6

7 --Entity
8 entity FA is
9 port (A, B, Ci: in std_logic ;

10 Co , S: out std_logic );
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11 end FA;
12

13 --One or more architectures per entity
14 architecture rtl of FA is
15 begin
16 S <= A xor B xor Ci;
17 Co <= (A and B) or (Ci and (A xor B));
18 end rtl;

Sequential Logic
Combinational logic has no memory of the past; the output is only a function of the present input.

In contrast to this, sequential logic is influenced by the history of the inputs — something known as
the memory effect. Sequential logic ciruits contain state elements, which are circuits that can hold a
value over time. All the state elements collectively store the current state of the circuit.
Sequential circuits are unique because they provide order to the operation of the circuit—some
operations will only compute once the inputs are ready. Furthermore, these kinds of circuits allow us
to coordinate the operation of different parts of a circuit. The main objective of this coordination
is that each part must operate on the correct set of data. Sequential circuits are composed of state
elements, which are circuit components able to store a 1 or 0 internally regardless of the input.
The most fundamental building block of state elements is the bistable circuit. This circuit has two
outputs, Q and Q. This circuit (Figure 1.12) creates a feedback loop that allows the circuit to store a
value indefinitely. The only issue it has is that it has no input — thus, there is no way to change its
state.

Figure 1.12: Schematic of a bistable circuit, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

Here is where flip–flops come into play. These circuits are bistable circuits with an input. They
are also known as edge–triggered circuits, because they only change their state when a clock signal
is received. The clock signal is a signal that oscillates between 0 and 1 at a fixed frequency and it is
usually denoted as clk or clock. When the clock is not changing, the flip–flop will ignore the input.
In this class, we will only use rising edge triggered flip–flops, which are flip–flops that change
their state when the clock signal goes from 0 to 1. There are different types of flip–flops, but the most
common one is the D Flip–flop. This type of FF has one data input port D, a single output port Q,
and a clock input port clk. Optionally, this FF may contain a reset port R and an enable port En. At
the rising edge of the clock signal, the value of the input D is stored. This data is outputed to Q after
a small delay, represented as Tclk→Q

D Flip–flops are often used as delay lines or shift registers, whose function is to delay the input
signal by a certain amount of time. This is achieved by connecting the output of one FF to the input
of the next FF in a chain of n length that will delay the input signal by n clock cycles. This works
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because in hardware, all the parts of the circuit operate in parallel, so the output of the first FF will
be available at the input of the second FF at the next clock cycle, and so on.
A register is a parallel composition of DFFs, where an n–bit register contains n DFFs. The difference
between registers and singular FFs is the capacity the former have of storing multi–bit values, as you
can see on Figure 1.13.

Figure 1.13: Schematic of a register, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

If a FF has an En port, it is called an enabled FF. This means that on every clock edge, the DFF
will be updated with D only if En is 1. If En is 0, the DFF will be "updated" with the previous Q.
If a FF has an R port, it is called a resettable FF. This means that when R is 1, Q will be reset to 0
regardless of the clock signal.

Check out Reset vs Clear

There are two common definitions of reset. The first one is the synchronous reset, which
can be implemented using logic gates. This reset will make the output Q 0 on the next clock
edge. The second one is the asynchronous reset, which requires special hardware. This is an
immediate change — as soon as clear is asserted, the output Q will be 0.
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Figure 1.14: Schematic of a D Flip–flop with reset, sourced from the slides on Combinational Logic by
Professor Hayden So of the University of Hong Kong

Let us understand better how to use DFFs. Toggle flip–flops toggle the output at a rising clock
edge when the toggle signal T is 1; otherwise, the output remains unchanged. We can implement this
with a DFF as follows:

1. Define a signal nextQ that denotes the output value of Q after the next clock edge

2. Make nextQ a function of Q and T This can be easily expressed in a truth table:

Q T nextQ

0 0 0
0 1 1
1 0 1
1 1 0

Table 1.12: Truth table for toggle flip–flop

3. Then, use a DFF to implement the function of storing nextQ into Q at the next clock edge

1.0.5 Synchronous Sequential Circuits

In a synchronous circuit, every state element is updated synchronously according to a single clock
signal. In this kind of circuit, every circuit element is either a register or a combinational circuit, there
must be at least one register, all the registers receive the same clock signal, and every cyclic path
in the circuit must contain at least one register.

Check out Clock Signal

The clock signal is a signal that toggles between 0 and 1 periodically. The frequency of
toggling determines the maximum speed of the circuit, which is measured via 1

clock period =
clock frequency. Unless creating an advanced circuit, you should never connect clock signals to
a normal port or connect normal signals into a clock port.

1.0.6 Sequential Circuits and VHDL

The hardware you describe using VHDL can be synthesised by certain tools, a process called
inferring circuits. To implement state elements, you may use the function rising_edge(clk), which
returns true if the clock signal has just risen. This function is defined within the std_logic_1164
library. For instance,
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1 architecture ex6 of foo is
2 begin
3 proc_reg : process (clk)
4 begin
5 if rising_edge (clk) then
6 q <= d;
7 end if;
8 end process ;
9 end ex6;

10 -------if we want to use synchronous reset:
11 architecture ex7 of foo is
12 begin
13 proc_reg : process (clk , rst)
14 begin
15 if rst = ’1’ then
16 q <= ’0’;
17 elsif rising_edge (clk) then
18 q <= d;
19 end if;
20 end process ;
21 end ex7;
22 ---alternatively
23 architecture ex8 of foo is
24 begin
25 proc_reg : process (clk)
26 begin
27 if ( clk ’event and clk = ’1’ ) then
28 if ( reset - ’1’ ) then
29 q <= ’0’;
30 else
31 q <= d;
32 end if;
33 end if;
34 end process ;
35 end ex8;

Finite State Machine (FSM)

A finite state machine is an abstraction of computation that can be used to model many
computing tasks. It is used to describe complex behaviour in circuits and systems, such as decision
making, network communication, microprocessor control, and others. Each FSM defines a finite
number of states that the machine can be in, as well as the conditions under which the machine will
go from one state to the other. At any moment, the machine can only exist in one of the defined states.
Similarly, its output will depend on the state the machine is in (and optionally on the input as well).
FSM are generated with the help of state transition diagrams, a visual tool to describe the behaviour
of the machines. Here, we represent each state as a block, and the transitions between states as directed
edges. The edges are labelled with the format condition / [output] Here, the output is optional
and represents the machine’s output specifically during that transition.
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Check out Moore Machine & Mealy Machine

When the output of a FSM depends only on the current state, we call it a Moore Machine;
thus, this kind of Machine has no combinational paths between input and output of a state
machine. On the other hand, when the output of a FSM depends on both the current state and
the input, we call it a Mealy Machine. This kind of machine requires less states to implement
the same function as a Moore Machine, but it is more complex to implement.

Finite State Machines can be implemented in hardware using synchronous sequential circuits.
The state of the machine is stored in a register, and the state transition conditions can be combinational
functions on input signals and the states. The outputs will thus simply be the output signals of the
circuit. Here, the transition condition will be checked on every clock edge. The following steps can aid
your design of such a machine:

1. Define the input and output signals

2. Determine how the FSM states will be represented in hardware. For instance, if there are n
states, we will need log2 n bits to represent them. Thus, if we have two FSM states, we will need
one DFF.

3. Implement the state transition logic. At each cycle, you will need to determine the next state the
FSM should be in the next cycle, as well as the transition conditions required. The next state
logic will thus be a combinational function of the current state and the input signals. It can be
found most directly through a truth table.

4. Determine the output logic, which is done in a way similar to how the next state logic is obtained.

5. Implement the circuit

Check out State Encoding

The most common way to represent abstract FSM states in hardware is through the binary
encoding scheme, where each state is encoded using an n–bit binary number. This encoding
scheme is simple and easy to implement, but it is not the most efficient. For instance, if we have
a FSM with n states, we will need n DFFs to store the state. However, if we use a one–hot
encoding scheme, we will only need n DFFs to store the state. This is because in this scheme,
each state is represented by a single bit, and only one bit is 1 at any given time. This scheme is
more efficient, but it is more complex to implement.
The mapping between state and encoding is arbitrary, so we usually encode the reset state as
all zeroes for convenience.
It is also possible for your machine to end up producing invalid states. When this is the case,
the machine can decide to ignore them, flag an error, reset the machine, or go to a default state.

1.0.7 VHDL

FSMs have 3 components, the state elements (registers), the next state logic (combinational), and
the output logic (combinational). Considering this, a good approach to implementing these machines
in VHDL is to use a process for each component. The next state logic and the output logic will be
combinational processes.

1. State Registers:
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1 SYNC_PROC : process (clk)
2 begin
3 if (clk ’event and clk = ’1’) then
4 if ( r = ’1’ ) then
5 state <= s_waitcard ;
6 -- s_waitcard is the reset state
7 else
8 state <= next_state ;
9 end if;

10 end if;
11 end process ;
12

You can define a new custom VHDL enumerated data type called state_type. For example:
1 architecture Behavioral of fsmdesign is
2 -- let us tell VHDL the possible values of this data type
3 type state_type is (s_waitcard , s_waitclk , s_waitdata , s_waitstop );
4 -- Define two signals of this type
5 signal state , next_state : state_type ;
6 begin
7

2. Next State:
Since this is a combinational process, the next state will be a function of the current state and
the input signals. This can be implemented using a case statement:

1 NEXT_STATE_DECODE : process (state , valid , pass )
2 begin
3 --declare default state for next_state to avoid latches
4 next_state <= state; -- default is to stay in current state
5 case ( state) is
6 when s_waitcard =>
7 if valid = ’1’ then
8 next_state <= s_waitpass ;
9 end if;

10 when s_waitpass =>
11 if pass = ’1’ then
12 next_state <= s_waitcard ;
13 end if;
14 when others =>
15 next_state <= s_waitcard ;
16 end case;
17 end process ;
18

3. Output Logic:
This is also a combinational process, so the output will be a function of the current state and the
input signals.

1 OUTPUT_DECODE : process (state)
2 begin
3 if state = s_waitcard then
4 motor <= ’1’;
5 else
6 motor <= ’0’;
7 end if;
8 end process ;
9
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1.0.8 Sequential Building Blocks

Counters are sequential circuits whose stored value increases on each clock edge. Binary counters
will cycle through all binary numbers, just to wrap around after overflow. They can be implemented
as in Figure 1.15.

Figure 1.15: Schematic of a binary counter, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

Using VHDL, this can be implemented as in the following sample:
1 library ieee;
2 use ieee. numeric_std .all;
3 --we need numeric_std for signals that involve
4 --arithmetic operations with unsigned type
5 architecture rtl of bcounter is
6 signal cnt: unsigned ( 31 downto 0 );
7 --this is the counter
8 begin
9 q <= std_logic_vector ( cnt ):

10 proc_cnt : process ( clk )
11 begin
12 if (clk ’event and clk = ’1’) then
13 cnt <= cnt + 1;
14 end if;
15 end process ;
16 end rtl;
17 --if we need to add clear , we built it as
18 architecture rtlr of bcounter is
19 signal cnt: unsigned (31 downto 0);
20 begin
21 q <= std_logic_vector ( cnt );
22 proc_cnt : process ( clk , clr )
23 begin
24 if ( clr = ’1’ ) then
25 cnt <= x" 00000000 ";
26 elsif ( clk ’event and clk = ’1’ ) then
27 cnt <= cnt + 1;
28 end if;
29 end process ;
30 end rtlr;

Similarly, we have the shift register, which is a sequential circuit that shifts the bits of a binary
number to the left or right and fills all empty spaces with zero. For instance, 11001 >> 2 means shift
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the number two bits to the right and results in 00110 If it were 11001 << 2 the result would be 00100.
This can be implemented as in Figure 1.16.

Figure 1.16: Schematic of a shift register, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

Another important device is the serial–to–parallel converter. These devices are tasked with
shifting a new bit in on each clock edge for N cycles. It has two modes, one where it reads the serial
output and another one where it reads the parallel output. This can be implemented as in Figure 1.17.

Figure 1.17: Schematic of a serial–to–parallel converter, sourced from the slides on Combinational
Logic by Professor Hayden So of the University of Hong Kong

Shift registers with parallel loads can be used as serial–parallel converters. If you wish to do
serial–to–parallel conversion, you need to convert from Sin to Q0:N−1. Alternatively, if you wish to
do a parallel–to–serial conversion, you need to convert from D0:N−1 to Sout, as shown in Figure 1.18.
When load = 1, the device acts as a normal N–bit register. When load = 0, the device acts as a shift
register.

Figure 1.18: Schematic of a shift register with parallel load, sourced from the slides on Combinational
Logic by Professor Hayden So of the University of Hong Kong
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Memory and Related Building Blocks

Memory arrays are 2–dimensional arrays of bit cells. Each bit cell is tasked with storing one bit.
They are used for storing data, logic, reorganisation of data, FIFO, and more. Memory arrays are
randomly addressable, and can be found in either RAM (Random Access Memory) or ROM (Read
Only Memory). The dimensions of the memory array are defined by the number of address bits N
and the number of data bits M . The number of rows is 2N and the number of columns is M . The
number of rows is also known as the number of words or the depth, whereas the number of columns is
also known as the size of word or the width. The overall array size is 2N × M bits.
Internally, most memory arrays have a row decoder, which selects the row to be read or written, and
a column decoder, which selects the column to be read or written, as seen on Fig 1.19. The row
decoder is a combinational circuit that takes the address bits as input and outputs a single row. The
dimensions of the decoder are contingent on the size of N , which can prove problematic considering
the cases when N is a large number, such as 32. This layout directly it not scallable, which is why real
memory is divided into banks or have different column organisations.

Figure 1.19: Schematic of a memory array, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

There are two main elements involved in read/write operations, the wordline and the bitline. The
former is the row decoder, whereas the latter is the column decoder. In the case of read operations,
there is only one wordline active at a time. The row of memory array to read is selected, and then one
address is read at a time. The bitline is connected to the output of the memory array, and the value
of the bitline is determined by the value of the bit cell. The case of write operations is similar; the
wordline will select the row of memory array to write, considering only one wordline can be active
at a time. Then, the bitline will broadcast the data from the external source to all cells. The values
broadcasted by the bitline will only be stored by the row of memory array selected by the wordline.
The naive memory implementation consists in mimicking the behaviour of a memory array using
a DFF with enable coupled with a tristate buffer. Read is performed when wordline is selected,
where the values will be passed through the buffer. If wordline is not selected, the output of the
buffer will remain being Z. Write is achieved by using the wordline to control the enable signal. The
implementation of this can be seen in Figure 1.20.
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Figure 1.20: Schematic of a naive memory implementation, sourced from the slides on Combinational
Logic by Professor Hayden So of the University of Hong Kong

Check out Tristate Circuit

Real world circuits have properties that are not modeled by Boolean equations: timing and Z.
Some conbinational circuits can produce a high–Z (Z) output; this output has a value that is
neither 0 or 1, but rather a high impedance state (a way for the driver to say "I’m not driving
anything"). This is achieved by using a tristate buffer, which is a circuit that has an input, an
output, and an enable signal. When the enable signal is 1, the output is the same as the input.
When the enable signal is 0, the output is Z. Essentially, when the enable signal is 0, the output
is physically disconnected from the input. Tristate buffers are often used to connect multiple
mutually exclusive drivers to the same node: both drivers share the same enable signal, but only
one of them is enabled at any given time.

The naive implementation is too complicated for large memory, considering that each bit cell
requires one DFF and one tristate buffer. This is why we use different types of memory technologies to
suit our needs.
The two main big categories are ROM (Read Only Memory) and RAM (Random Access Memory).
ROM is a memory array that can only be read, whereas RAM is a memory array that can be read and
written. RAM is further subdivided into volatile and non–volatile memory. The former loses its
data when the power is turned off, whereas the latter retains its data even when the power is turned
off. Let us look at some examples of these technologies.

1. SRAM (Static RAM):
This memory technology is volatile and mostly designed on standard digital circuit technology. It
has a simple read/write interface and is very fast. However, it is expensive and has a low density.
The most common SRAM cell design is that of a simple cross–coupled inverter as in Figure 1.21.
The read operation involves simply taking the value from Q or Q′. The write operation involves
forcing values through the 2 access transistors. This is done byb setting B and B′ to the desired
value, enabling WE and disabling it after the write is done. After disabling WE, the cell will
retain the value written.

Figure 1.21: Schematic of a SRAM cell, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong
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Each inverter can be implemented using two transistors; thus, the entire SRAM cell uses 6
transistors (two for each inverter and two for the access transistors). This is why SRAM is
expensive and has a low density—each SRAM cell is six to ten times larger than one DRAM cell.

2. DRAM (Dynamic RAM):
In DRAM data is stored in a single capacitor. Read/write access is done through a single
transistor (sometimes referred to as a 1T cell). The read operation for DRAM is destructive,
meaning that the data stored will be lost after read. Usually, the data is written back after read
to prevent it from disappearing. This type of device also loses its data over time due to charge
leakage—most modern DRAM devices have auto refresh capabilities to counter this.
Bits are stored in two–dimensional arrays on the chip, chips having around 4 to 8 logical banks
each, which can be seen on Figure 1.22.

Figure 1.22: Schematic of a DRAM chip, sourced from the slides on Combinational Logic by Professor
Hayden So of the University of Hong Kong

The read operation is performed by enabling the target wordline, sensing Amps sense changes in
bitline voltage, latching the results, and then selecting the desired column from the output latch.
In general, DRAM has three basic operations:

(a) Row Access: select rows depending on address. Sense amps sense very small changes in
bitline level. Voltage change is small because charge stored in a small cap is shared with long
bitline. Thus, sense amps restore full swing level and restore the data in the cell (refresh)

(b) Column Access: select the desired bits out of the entire row (usually small portions of 4, 8,
16, or 32 bits). On read, the data is sent out of the package. On write, the design data is
written in the sense amp latches, and the sense amp latches refresh the array with new data
and the original data from unchanged bits.

(c) Precharge: the bitline is precharged for the next operation

In modern DRAM, each operation takes 15 to 20ns. Getting the first bit takes very long (high
latency), but once the entire row of bits has been sensed, subsequent column data can be sent
out of the package at high bandwidth.

In a system, DRAM is usually packaged in chips. DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals connected in parallel. Data pins work together to
return wide words (64–bit data bus using 16 × 4–bit parts). DIMM is too bulky, so it is also common
for the DRAM to be soldered on the back of the main board directly.
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