
Sequence Models

Notes by José A. Espiño P. 1

Summer Semester 2022–2023

1The content in these notes is sourced from what was covered in the MOOG the document is named
after. I claim no autorship over any of the contents herein.

Contents

1 Recurrent Neural Networks 2

2 Natural Language Processing and Word Embeddings 7
2.1 Learning Word Embeddings: Word2Vec and GloVe 8

3 Sequence Models and Attention Mechanism 10
3.1 Attention . 11

4 Transformer Network 12

1 Recurrent Neural Networks

To represent a word in a sentence, the first thing you have to create is a vocabulary, a list of
the words that you will use in your representation. We can achieve this by looking through
the n most common words in our training sets, and then use a one–hot representation to rep-
resent each word in our vocabulary. This means that if we have a vocabulary of n words, we
will have a vector of n dimensions, where each dimension represents a word in our vocabu-
lary. The vector will be all zeros except for the dimension that represents the word we want to
represent, which will be a one. This is called a one–hot vector. There are cases in which we
come across words that are not in the vocabulary. When this happens, we can use a special
token to represent these words. This token is called UNK.
When it comes to processing natural language, standard networks are not very good at it. This
is because they do not take into account the order of the words in the sentence. Furthermore,
inputs and outputs can be different lengths in different examples. Lastly, regular networks
do not share features learned across different positions of text. For instance, if the network
can recognise that Harry is a name when it is in the first position of a sentence, it will not
necessarily be able to classify it as so when it is in the second position.

The solution to this shortcoming is provided by Recurrent Neural Networks (RNNs). The
key feature of these networks is that they have a memory that allows them to take into ac-
count the order of the words in the sentence. This memory is represented by a hidden state
ht that is passed from one step to the next. Thus, when calculating the activation of a single
element in the input sequence, we will not only take into account the input at that position,
but also the hidden state from the previous position. At time zero, the hidden state is ini-
tialised to zero. Then, at each time step, the hidden state is calculated as follows:

ht = at = f (Waa a<t−1>+Wax x<t>+ba)

where f is an activation function that takes the previous hidden state and the current input
and returns the new hidden state.
Furthermore, the output of the network is calculated as follows:

yt = ŷt = g (Wy a a<t>+by)

2

where g is an activation function that takes the current hidden state and returns the output.
The RNN scans from left to right through the input sequence, and the parameters it uses for
each step are shared.
One weakness of RNNs is the fact that it only has access to the previous hidden state. This
means that it cannot take into account the context of the sentence that comes after the cur-
rent word. This is where bidirectional RNNs come in. These networks have two hidden
states, one that scans the input sequence from left to right, and another that scans it from
right to left. The two hidden states are then concatenated to form the final hidden state. We
will talk more in detail about them later on.
Another weakness of RNNs is that they are not very good at remembering long–term depen-
dencies. This is because the gradient of the loss function with respect to the parameters of the
network is multiplied by the same matrix at each time step. This means that the gradient can
either explode or vanish as it is propagated through the network. This is called the vanishing
gradient problem, which we will cover later on.
Forward propagation in an RNN is illustrated in the following image:

Figure 1: Forward propagation in an RNN, sourced from this site.

When it comes to back propagation, the first thing we need to define is a loss function.
This function will tell us how good our network is at classifying the input. The loss function
we will use is the cross–entropy loss function, which is defined as follows:

L(ŷ , y) =−
n∑

i=1
yi log(ŷi)

The equation is a sum because our total loss will be the sum of the losses of each element in
the output sequence. You can visualise the back propagation process in the following image:

3

https://www.researchgate.net/figure/Recurrent-neural-network-RNN-The-circles-represent-network-layers-and-the-solid-lines_fig2_333119454

Figure 2: Back propagation in an RNN, sourced from this site.

There are several situations in which the input and output lengths can be different. We can
modify the basic RNN architecture to deal with these situations. Some common architectures
are:

1. Many–to–many: This architecture is used when the input and output are both se-
quences of the same length. For instance, it can be used to categorise the words in
a sentence as per their grammatical function.
It can also be the case that this kind of architecture is used when the input and output
are sequences of different lengths. For instance, it can be used to translate a sentence
from one language to another. Usually, they are built as encoder–decoder pairs, where
the input sequence is first processed by an RNN and encoded into a single vector, and
then this vector is used as the initial hidden state of another RNN that will decode it
into the output sequence.

2. Many–to–one: This architecture is used when the input is a sequence and the output
is a single value. Instead of outputting something at each timestep, it will process the
entire sequence before outputting a single result. For instance, it can be used to classify
a sentence as positive or negative.

3. One–to–many: This architecture is used when the input is a single value and the output
is a sequence. For instance, it can be used to generate a sentence based on a single
word.

4. One–to–one: This architecture is used when the input and output are both single val-
ues. For instance, it can be used to predict the next word in a sentence.

4

https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

A language model is a model that can predict the probability of a sequence of words. It can
be used to generate text, and it can also be used to evaluate the probability of a sentence.
A language model is built by training an RNN to predict the next word in a sequence, which
is done by feeding it a large corpus of text. The RNN is trained to predict the next word in a
sequence given the previous words. Before training the RNN, we need to preprocess the text.
This is done by first creating a vocabulary of the most common words in the corpus, and then
replacing each word in the corpus with its index in the vocabulary — a process known as to-
kenisation. Furthermore, we need to add a special token to the beginning of each sentence,
and another one to the end of each sentence, known as start of sentence (SOS) and end of
sentence (EOS) tokens respectively.
When training the RNN, a common method is teacher forcing. This method consists of feed-
ing the RNN the correct word at each time step, instead of feeding it the word it predicted at
the previous time step. This is done because the RNN is more likely to learn to predict the
next word correctly if it is fed the correct word at each time step.

After you train a sequence model, one of the ways you can get a sense of what it has learnt
is to have sample novel sequences from it. This is done by feeding it a start of sentence token,
and then sampling a word from the probability distribution of the output. Then, you feed the
word you sampled back into the network, and repeat the process until you sample an end of
sentence token.
RNNs can be built depending on the way you want to represent each element in the sequence.
Two of the most common ways are character–level language models and word–level language
models. One of the biggest challenges of RNNs is the vanishing gradient problem. This is
because the gradient of the loss function with respect to the parameters of the network is
multiplied by the same matrix at each time step. This means that the gradient can either
explode (exploding gradients) or vanish as it is propagated through the network. In practice,
this means that the RNN will have problems learning long–term dependencies.
A modification of the RNN known as Gated Recurrent Unit (GRU) is efficient at capturing
long–range connections and alleviate the vanishing gradient problem. As we read an input
sequence from left to right, the GRU will have a new variable, c. This is the memory cell, which
will contain information about the previous hidden states. Considering that at a time t , the
value of c will be c<t>, the GRU will actually output an activation at t such that a<t> = c<t>.
The key of the GRU is it having two gates: the update gate and the reset gate. The update
gate is a vector that determines how much of the previous memory cell is kept. The reset gate
is a vector that determines how much of the previous hidden state is kept. The equations for
the update gate and the reset gate are as follows:

Γu =σ(Wu[a<t−1>, x<t>]+bu)

Γr =σ(Wr [a<t−1>, x<t>]+br)

Where σ is the sigmoid function and Γu and Γr are the update and reset gates respectively.
When it comes to updating the memory cell, the GRU will first calculate a candidate memory
cell c̃<t>, which is calculated as follows:

c̃<t> = tanh(Wc [Γr ∗a<t−1>, x<t>]+bc)

5

Once this has been computed, the value of the memory cell is updated as follows:

c<t> = Γu ∗ c̃<t>+ (1−Γu)∗ c<t−1>

Finally, the activation at time t is calculated as follows:

a<t> = c<t>

Another modification of the RNN known as Long Short–Term Memory (LSTM) is also effi-
cient at capturing long–range connections and alleviate the vanishing gradient problem. The
LSTM is similar to the GRU, but it has three gates instead of two: the forget gate, the up-
date gate and the output gate. The forget gate is a vector that determines how much of the
previous memory cell is kept. The update gate is a vector that determines how much of the
previous hidden state is kept. The output gate is a vector that determines how much of the
current memory cell is outputted. The equations for the forget gate, the update gate and the
output gate are as follows:

Γ f =σ(W f [a<t−1>, x<t>]+b f)

Γu =σ(Wu[a<t−1>, x<t>]+bu)

Γo =σ(Wo[a<t−1>, x<t>]+bo)

Where σ is the sigmoid function and Γ f , Γu and Γo are the forget, update and output gates
respectively.
When it comes to updating the memory cell, the LSTM will first calculate a candidate memory
cell c̃<t>, which is calculated as follows:

c̃<t> = tanh(Wc [a<t−1>, x<t>]+bc)

Once this has been computed, the value of the memory cell is updated as follows:

c<t> = Γu ∗ c̃<t>+Γ f ∗ c<t−1>

Finally, the activation at time t is calculated as follows:

a<t> = Γo ∗ tanh(c<t>)

The way all of these equations interact in an LSTM is illustrated in the following image:

Figure 3: The four interacting layers in an LSTM, sourced from this site.

6

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Another powerful idea is to use bidirectional RNNs. These networks have two hidden
states, one that scans the input sequence from left to right, and another that scans it from
right to left. The two hidden states are then concatenated to form the final hidden state.

Finally, there is the concept of Deep RNNs, which are RNNs that have multiple hidden lay-
ers. These networks are very powerful, but they are also very computationally expensive.

2 Natural Language Processing and Word Embeddings

Word embeddings are a way of representing words as vectors. These vectors are usually of a
much lower dimension than the one–hot vectors we used to represent words in the previous
section. The issue with one–hot vector representation is that it treats each word as its own en-
tity, which makes it hard for the network to learn relationships between words. For instance,
the one–hot vectors for king and queen would be completely different, even though they are
related. This is because the inner product between any two one–hot vectors is zero.
Word embedding is a featurised representation: we choose a certain set of features (e.g. gen-
der, age, etc.) and then we represent each word as a vector of these features. Using this repre-
sentation, the embeddings for words that are morphologically similar will also be similar —
which may allow the algorithm to learn relationships between words. A common algorithm
to visualise the similarity between embeddings on a 2–D plane is the t–SNE algorithm.
Word embendding is done through an embedding model that has been trained on billions
of words. The most common embedding model is Word2Vec. This model is trained by feed-
ing it a large corpus of text, and then it will learn to predict the context of a word given its
neighbouring words. Another common embedding model is GloVe. This model is trained
by feeding it a large corpus of text, and then it will learn to predict the probability of a word
appearing given another word.
We use transfer learning with word embeddings by using the embedding model to initialise
the embedding layer of the RNN we want to create. This is done because the embedding
model has already learnt to represent words in a way that captures their relationships.
An important property of word embeddings is how they can help with analogy reasoning.
This is done by first computing the distance between two vectors, and then finding the vector
that is closest to the result of adding the vector of the word we want to find the vector of and
the distance between the two previous vectors. For instance, if we input "Man is to woman as
king is to (blank)", the computer will try to find a vector e such that eman−ewoman ≈ eki ng −e.
The similarity function that is most commonly used is the cosine similarity, which is defined
as follows:

cosine similarity(u, v) = uT · v

||u||2||v ||2
Usually, we let u be the vector of the word we want to find the vector of, and v be the vector
of the word we want to compare it to.

7

2.1 Learning Word Embeddings: Word2Vec and GloVe

When implementing an algorithm to learn a word embedding, what it ends up learning is a
word embedding matrix E . This matrix will have a row for each word in the vocabulary, and
each row will be the vector representation of the word. Then, if you multiply the one–hot
vector of a word by the embedding matrix, you will get the embedding of the word.
Using a neural language model, we can learn a word embedding matrix by training the net-
work to predict the next word in a sequence given the previous words. The embedding ma-
trix will be the weights of the embedding layer of the network. Usually the embedding matrix
is initialised randomly, and then it is updated as the network is trained. Additionally, the
amount of words before and after the word we want to predict that we feed into the network
is called the context window, which is a hyperparameter of the network.
Now, let us talk about the Word2Vec algorithm. This algorithm’s context uses a scheme known
as skip–grams, which consists of feeding the network a word and then feeding it the words
that appear around it in the corpus. The network will then try to predict the words that ap-
pear around the word we fed it. Our goal will not be necessarily to predict the words in the
vicinity of the target correctly, but rather to learn the embedding matrix. Take a look at this
representation of skip–gram:

Figure 4: The Word2Vec algorithm

The loss function we will use to train the network is the softmax loss function, which is
defined as follows:

L(ŷ , y) =−
n∑

i=1
yi log(ŷi)

When we optimise the loss function, we will be updating the embedding matrix.
The main issue with this algorithm is the computational speed: every time we want to eval-

uate p(t |c) = evT
t ec∑n

j=1 e
vT

j
ec

, we have to compute the exponential of the inner product of the em-

bedding of the target word and the embedding of the context word. This is computation-
ally expensive, and it is also numerically unstable. We tackle this issue through Hierarchical

8

Softmax, which consists of representing the probability distribution as a binary tree. This
way, instead of having to compute the exponential of the inner product of the embedding of
the target word and the embedding of the context word, we only have to compute the expo-
nential of the inner product of the embedding of the target word and the embedding of the
context word with the nodes of the tree.
A modified learning algorithm that does not use softmax is Negative Sampling. This algo-
rithm consists of feeding the model a target word and a word from its context window, and
then feeding it a word that does not appear around it in the corpus. The network will then try
to predict whether the two word pairs are or not valid context pairs. The amount of negative
samples, k is a hyperparameter of the network. We will define a logistic regression model
to predict whether a pair of words is a valid context pair or not: P (y = 1|c, t) = σ(θT

t ec).The
loss function we will use to train the network is the logistic loss function, which is defined as
follows:

L(ŷ , y) =−y log(ŷ)− (1− y) log(1− ŷ)

On every iteration, we are only going to train k +1 binary classifiers, which makes this algo-
rithm much faster than softmax.
Another popular algorithm is GloVe, which stands for Global Vectors. This algorithm is sim-
ilar to Word2Vec, but instead of trying to predict the context of a word given its neighbouring
words, it tries to predict the probability of a word appearing given another word. The loss
function we will use to train the network is the least squares loss function, which is defined
as follows:

L(ŷ , y) =
n∑

i=1
(ŷi − yi)2

The idea is to essentially minimise the difference between the inner product of the embed-
ding of the target word and the embedding of the context word and the logarithm of the
number of times the target word appears in the context of the context word, which is defined
as follows:

J =
n∑

i=1

n∑
j=1

f (Xi j)(vT
i e j + log(Xi j)+bi +b j)2

Here, f (Xi j) is a weighting function that is used to give more importance to words that ap-
pear more frequently. This function is important because it must not overweight common
words like the and a, while not underweight rare words like onomatopoeia.
The main difference between Word2Vec and GloVe is that GloVe uses the logarithm of the
number of times a word appears in the context of another word, instead of the number of
times a word appears in the context of another word.
One of the most basic tasks in NLP is sentiment classification, predicting whether the senti-
ment of a sentence is positive or negative. The simplest way this can be done is by extracting
the embedding of each word in the sentence, and then averaging them to obtain the embed-
ding of the sentence. Then, we can feed this embedding into a softmax classifier to predict
the sentiment of the sentence. One of the issues of this algorithm is that it ignores word order.
Thus, a better way to do it is by using an RNN: we feed the embedding of each word into the
RNN, and then we feed the final hidden state of the RNN into a softmax classifier to predict

9

the sentiment of the sentence. Here, we can consider the RNN as an encoder of sorts.

3 Sequence Models and Attention Mechanism

The core idea behind Sequence–to–sequence (Seq2Seq) models is to use two RNNs: one that
encodes the input sequence into a single vector, and another that decodes the vector into the
output sequence. The first RNN is called the encoder, and the second RNN is called the de-
coder. Encoders can even work with images, by removing the last softmax layer from a CNN
classification network — this will make the output be a vector representation of the image.
This type of model is often used for image captioning, machine translation, speech recogni-
tion, etc. Machine translation and conditional language models are essentially different in
that the former has two RNNs (encode–decode) while the latter only has one (decode). Ma-
chine translation can be seen in terms of conditional probability: model the propbability of
the output sequence given the input sequence. Thus, what you are trying to do in this model
is to find

arg max
y<1>,...,y<Ty >

P (y<1>, ..., y<Ty>|x<1>, ..., x<Tx>)

The most common algorithm to maximise this probability is beam search. This algorithm
consists of keeping track of the B most likely sequences at each time step, and then choosing
the B most likely sequences at the next time step from those B sequences. The parameter B
(the beam width) determines how many sequences are kept at each time step. The higher the
value of B , the more likely it is that the algorithm will find the most likely sequence, but the
more computationally expensive it will be.
Beam search is performed by running the sequence through an encoder, and then feeding the
output of the encoder into a decoder. The decoder will then output a probability distribution
for the next word in the sequence. The B most likely words are then chosen, and then the de-
coder is run again with each of these words as input (P (sequence y|likely word and input sequence)).
Then, the algorithm will see the two word sequences that have been generated and determine
which B sequences are the most likely (and then discard the rest). This process is repeated
until the end of the sequence is reached.
Length normalisation can help beam search work even more efficiently. This is done by di-
viding the probability of the sequence by the length of the sequence raised to the power of a
hyperparameter α. This way, the algorithm will be more likely to choose shorter sequences.
The value of α is usually between 0.5 and 1. Another way to improve beam search is to use
coverage penalties. This is done by adding a term to the loss function that penalises the al-
gorithm for repeating words. This way, the algorithm will be more likely to choose sequences
that have not been chosen before.
When the model outputs a wrong translation, the error can either be found in the RNN or
in the beam search algorithm. To determine where the error is, we will input both the cor-
rect and the incorrect translation into the model, and then we will compute P (correct|x) and
P (incorrect|x). If P (correct|x) > P (incorrect|x), then the error is in the beam search algo-
rithm. Otherwise, the error is in the RNN.

10

One of the challenges of machine translation is that there are possibly multiple correct trans-
lations for a single sentence. This is why we use BLEU scores to evaluate the performance of
a machine translation model. This metric is based on the precision of the model, which is
defined as follows:

precision = number of words in the machine translation that appear in the reference translation

number of words in the machine translation

The BLEU score is a version of precision in which words can only appear as many times as
they appear in the reference translation. This is done to penalise the model for repeating
words. Bleu will take unigrams, bigrams, trigrams, and so on to compute the score. This
guarantees that the model will be penalised for having incorrect syntax. The BLEU score is
defined as follows:

BLEU = BPexp

(
N∑

n=1
wn log pn

)
Here, pn is the precision for n-grams, and wn is the weight for n-grams. The weights are
usually set to 1

N , where N is the number of n-grams. The brevity penalty (BP) is defined as
follows:

BP =
{

1 if c > r

e1−r /c if c ≤ r

Here, c is the length of the candidate translation, and r is the length of the reference transla-
tion.

3.1 Attention

The main issue with the Seq2Seq model is that when the sequence gets lengthy, the encoder
will have to compress a lot of information into a single vector — which leads to information
loss. This is where attention models come in. These models allow the decoder to look at
the entire input sequence when generating a word. This is achieved by generating attention
weights α, which determine how much attention the decoder will pay to each word in the
input sequence. The attention weights are calculated as follows:

α<t ,t ′> = exp(e<t ,t ′>)∑Tx

t ′=1 exp(e<t ,t ′>)

Here, e<t ,t ′> is the alignment model, which is a function that takes the hidden state of the
decoder at time t and the hidden state of the encoder at time t ′ and returns a value between
0 and 1. The alignment model can be implemented as a neural network.
The context vector is then calculated as follows:

c<t> =
Tx∑

t ′=1
α<t ,t ′>a<t ′>

11

4 Transformer Network

So far, all of the models we have covered — RNNs, GRUs, LSTMs — are sequential. This means
that they process the input sequence one element at a time, which is practically a bottleneck.
This is where Transformer networks come in. These networks are non–sequential, which
means that they can process the input sequence in parallel. This is achieved by using atten-
tion to determine how much attention the network should pay to each element in the input
sequence.
In order to understand the idea of attention, there are two concepts we need to understand:

1. Self–attention: This consists in creating attention–style representations for each of the
words in the input sentence. As opposed to word embeddings, this representation tries
to make the word vector reflect the meaning of the word within the sentence itself.
This means that the representation of a word will be slightly different depending on
the sentence it is in.
Similar to the way we did with RNNs, attention is computed by calculating a query, a
key and a value for each word in the input sentence. Then, the attention weights are
calculated as follows:

A(q,K ,V) =∑
i

exp(q ·k<i>)∑
j exp(q ·k< j>)

v<i>

Here, q is the query, K is the matrix of keys, V is the matrix of values, k<i> is the i th key,
v<i> is the i th value, and A is the attention function.
The query, key, and value of a given word are calculated as follows:

q =Wq x

K =Wk x

V =Wv x

Here, Wq , Wk and Wv are matrices of weights that are learned during training, and x is
the word vector.
The difference with RNNs is that transformers will compute the alignment model for
all of the words in the input sentence at the same time, which means that they can be
computed in parallel. Since usually the values of q , K and V are matrices, attention can
be computed as:

A(Q,K ,V) = softmax

(
QK T√

dk

)
V

2. Multi–head attention: This consists in computing attention several times in parallel,
and then concatenating the results. This is done because it allows the network to learn
different relationships between words. You can think of multi–head attention as just a
for–loop that computes attention several times, and then concatenates the results — in
practice, this is done in parallel though.

12

Multi–head attention will have different matrices of weights for the query, key and value
for each head, where head h stands for the number of times attention is computed in
parallel. This means that the matrices of weights will have the shape dmodel ×dk , where
dmodel is the dimension of the word vector and dk is the dimension of the key vector.

Transformers are divided into two blocks, an encoder and a decoder. The encoder will take
the input sequence and output a vector representation of it. The decoder will take the vector
representation of the input sequence and output the output sequence. The flow of informa-
tion in a transformer network is as follows:

1. The input sequence is embedded into a vector representation. This will give us our
input.

2. Feed the input into the encoder:

a) The encoder will compute the values of Q, K , and V to perform self–attention
several times in parallel, and then concatenate the results.

b) Then, the encoder will feed the result into a feed–forward neural network. This
helps determine what interesting features are to be found in the sentence.

In the transformer paper, this encoder block is repeated n times, where n is a hyperpa-
rameter of the network.

3. Feed the output of the encoder into the decoder:

a) First, we will pass <SOS> into a multi–head attention block. This will output our
first query.

b) Using this first query, we will now pass it alongside the output of the encoder (our
first key and value) into a multi–head attention block.

c) Then, the values of the multi–head attention block will be passed into a feed–forward
neural network. This neural network will determine which is the next word in the
sequence.

Each decoder block will also be repeated n times, where you take the output of one of
the blocks and treat it as the input of the other block. Note that all the blocks will have
access to the output of the encoder; the only thing that will vary is the starting value
that generates the first query.

There are some details that can improve the performance of the transformer network:

• Positional Encoding: Since the transformer network does not have any notion of word
order, we need to add a positional encoding to the input sequence. This is done by
adding a vector to the word vector that encodes the position of the word in the sen-
tence. This vector is calculated as follows:

PE(pos,2i) = sin

(
pos

100002i /dmodel

)

13

PE(pos,2i+1) = cos

(
pos

100002i /dmodel

)
This positional encoding will be directly added to the word vector.

• Add and Norm: This consists in adding a residual connection to the output of each
block, and then normalising the result. This is done to prevent the vanishing gradient
problem.

• Masked Multi–head Attention: This is used in the decoder to prevent the decoder from
looking at future words. This is done by setting the attention weights of the future words
to −∞. This way, when the softmax function is applied, the attention weights of the
future words will be zero. The point of this is to prevent the decoder from looking at
future words, since it is not supposed to know what the future words are.

14

	Recurrent Neural Networks
	Natural Language Processing and Word Embeddings
	Learning Word Embeddings: Word2Vec and GloVe

	Sequence Models and Attention Mechanism
	Attention

	Transformer Network

