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1 Introduction to Deep Learning

Deep Learning refers to training neural networks. The most essential component of a neu-
ral network is a neuron, a unit that take in certain inputs, operates on them, and outputs a
result. In a NN, several neurons are stacked together in layers, where each neuron will be
tasked with computing features out of certain inputs.
For instance, imagine your inputs for a housing price prediction NN are the house size,
number of bedrooms, zip code, and wealth. Perhaps one of the neurons in the next layer will
calculate the family size (from the size and number of bedrooms), another one will calculate
the walkability (from zip code), and another one will calculate the school quality (from zip
code and wealth). These three new features can then be fed as a vector to another neuron
that will compute the price.
The feature that makes NN so attractive is that the features in the middle will be discovered
by the algorithm during training; you only need to provide the network with x inputs paired
with y outputs as training samples.
In a neural network, each neuron in a layer is called a hidden unit. Dense neural networks
are characterised for providing every individual neuron in a layer with all the outputs of the
previous one, even if the feature they compute only requires of a portion of the features.

2 Neural Networks Basics

Logistic regression, an algorithm for binary classification, will be the basis of our introduc-
tion. If we have an image as an input, we will unroll the red, green, and blue pixel matrices
into a vector x⃗ of size h x w x 3, where h and w are the height and width of the image in
question. Usually, all the inputs will be stored in a matrix X where every train sample is a
column. This matrix will be of n , m dimensions, where n is the amount of features per input
and m is the amount of samples.
So, given an input feature vector x⃗ , we want an algorithm that outputs a prediction ŷ , an es-
timate of the probability that y = label 1. ŷ is generated by calculatingσ(w T x + b ), where
σ(z ) = 1

1+e −z and w⃗ , b are parameters you want to estimate during training.
As you know, training is done by trying to minimise parameters w⃗ and b in a given cost
function. The cost function we shall use for logistic regression is the average of the the
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log–likelihood function, namely:

J (w , b ) =−
1

m

m
∑

i=1

(y i l o g ( ŷ i ) + (1− y i )l o g (1− ŷ i ))

Where m stands for the number of training samples.
Equipped with this, we can use an optimisation algorithm to find the parameters that most
effectively diminish this cost. One of the most common functions for this purpose is gradi-
ent descent, which does the following:
Repeat{

wi :=wi −α
∂ J (w⃗ , b )
∂ wi

b := b −α
∂ J (w⃗ , b )
∂ b

}
The w update must be applied for all m features. The updates must be done simultane-
ously, meaning that we will perform the operations in the curly brackets and then we will
update all the parameters.
The computations of a neural network are organised in a forward propagation step, in
which we compute the output of the neural network, followed by a back propagation step,
in which we compute the gradients/derivatives.

Vectorisation can render gradient descent much more efficient than it currently is.

3 Shallow Neural Networks

The three core components of a neural network are the input layer, the hidden layer, and
the output layer. In a training set, we have the values for the inputs and outputs, but not
the ones for the layers in the middle — which is why we call it hidden in the first place. The
values that each layer passes to the next layer are called the activation. The hidden layers
and the output layer will have parameters w⃗ and b⃗ associated to them. w⃗ will be a (n , m )
matrix, where n refers to the number of nodes in the hidden layer and m to the number of
inputs. Similarly, b⃗ will be a vector of (n , 1) dimension.
In a neural network, every neuron in a layer will perform a certain operation (e.g. logistic
regression) on the input vector it receives and the entire layer will output an activation vec-
tor a⃗ . With vectorisation, we might be able to compute the output of the neural network for
several samples at a time: we create a matrix X where every training sample x⃗ is stacked as
a column. We will then compute each activation asσ(W T X + b⃗ ), which will then be stacked
on a matrix, where each column will have the activation vector generated by each training
sample.
So far we have been using the Sigmoid function as our activation function. This is not the
most ideal option in most cases. A function that usually outperforms the Sigmoid func-
tion is the hyperbolic tangent function, defined as t a nh (z ) = e z−e −z

e z+e −z . The one exception in
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this case is the output layer of binary classification, where the Sigmoid activation function
proves the most efficient. One of the downside of these two is that if z is very large or small,
the slope will be close to zero — which significantly slows down gradient descent. Another
function that avoids this issue is Rectified Linear Unit, also known as ReLU. This function
is defined as Q (z ) = ma x (0, z ). As a rule of thumb, if you do not know which activation
function to use, opt to use ReLU. A downside of this function is the fact that any negative
derivatives will be zeroed. This is addressed by another function, Leaky ReLU, which is de-
fined as Q L (z ) =ma x (0.01z , z ).
Here are some ways to compute the derivative of these common activation functions during
back propagation:

Figure 1: Sourced from here

When it comes to gradient descent, it is the following way:

Repeat until convergence{

Compute predictions ( ŷ (i ), i −1..., m )

∂ w [i ] =
∂ J

∂ w [i ]
,∂ b [i ] =

∂ J

∂ b [i ]

w [i ] =w [i ]−α∂ w [i ]

b [i ] = b [i ]−α∂ b [i ]

}

In short, the process is:
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1. Forward Propagation:

Z [i ] =W [i ]X + b [i ]

A[i ] = g [i ](Z [i ])

Z [i+1] =W [i+1]A[i ]+ b [i+1]

A[i+1] = g [i+1](Z [i+1])

Until we get to the last layer.

2. Back Propagation (let u be the last layer):

∂ Z [u ] = A[u ]−Y Y = [y (1), y (2), ..., y (m )]

∂W [u ] =
1

m
∂ Z [u ]A[u−1]T

∂ b [u ] =
1

m
np.sum(∂ Z [u ], a x i s = 1, k e e p d i m s = T r ue )

∂ Z [u−1] =W [u ]T ∂ Z [u ] ∗ g [u−1](Z [u−1])

continue until first layer

∂W [i ] =
1

m
∂ Z [i+1]X T

∂ b [i ] =
1

m
np.sum(∂ Z [i ], a x i s = 1, k e e p d i m s = T r ue )

When training the neural network, it is important to initialise the weights randomly; ini-
tialising them to zero and then applying gradient descent will be unsuccessful. This is be-
cause this renders the activation of every neuron and thus their derivatives through back
propagation identical, a problem called symmetry breaking.

4 Deep Neural Networks

A deep neural network is a neural network which has several layers. When we are covering
DNNs, L will refer to the number of layers in the network, and n [l ] refers to the number of
units in a specific layer l . Similarly, a l represents the activation produced by each individual
layer.
In this type of network, forward propagation takes a slightly different shape: each layer will
be computed as:

Z [n ] =W [n ]A[n−1]+B [n ]

A[n ] = g [n ](Z [n ])

Remember that A[0] is the input vector X .
A very crucial factor to be considered in the implementation of a DNN is the dimension
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of the matrices that are being handled. For every step of forward propagation, we must
consider W and A. W [l ] must have the dimensions [n [l ], n [l−1]] while A[l−1] will have the
dimensions [n [l−1], 1]. The dimensions of the vector B must match that of the vector W A;
thus, B [l ] will have the dimensions [n [l ], 1]. Even for vectorised implementations, the di-
mensions of these three elements will remain consistent. The only point to note is that B
will be broadcasted to match the dimensions of the matrix it will be summed to.

Take a look at the usual flow of information in a deep neural network iteration:

Figure 2: Sourced from here

Let us see the implementation of forward propagation:
As you can see in the above diagram, our goal is to obtain an output A[l ] and to cache the
value of Z [L ] from an input A[l−1]. You might already be familiar with the equations needed
to realise this:

Z [l ] =W [l ] ·A[l−1]+ b [l ]

A[l ] = g [l ](Z [l ])

Similarly, in the case of backward propagation, our goal is to obtain a outputs d a [l−1], d W [l ], d b [l ]

from an input d a [l ]. This is realised through:

d Z [l ] = d A[l ] ∗ g [l ]
′
(Z [l ])

d W [l ] =
1

m
d Z [l ] ·d A[l ]

d b [l ] =
1

m
np .s um (d Z [l ], a x i s = 1, k e e p d i m s = T r ue )

d A[l−1] =W [l ]T ·d Z [l ]
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For the final layer, the formula we use in this case is d A[1] = (Do this for every element) −
y
a +

(1−y )
(1−a ) .

Hyperparameters are parameters that control the final value of the regular parameters,
such as W and b . It includes the learning rate α, the number of iterations, the number of
hidden layers L , the number of hidden units n [x ], etc. Later on, we will cover some ways to
systematically find the best values for hyperparameters, but it often involves a large amount
of trial and error.

1 sample!
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