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Introduction

Credits

These notes contain information from several sources, but mainly from the lecture notes
from the class COMP2501A at the University of Hong Kong and the book Introduction to Data
Science by Rafael A. Irizarry. 1 claim no autorship over any of the contents herein. Feel free to
contact me at jespigno (at) connect (dot) hku (dot) hk if you have any questions or concerns.

This course will use the R language, which is a programming language and free software environment
for statistical analysis and data visualisation. This language, as opposed to other mainstream ones,
was created by statisticians for the express purpose of data analysis. This means that it is uniquely
dynamic and powerful for this purpose.

The "launching pad" for our data science projects is RStudio, which is an integrated development
environment (IDE) for R. It includes a console, syntax-highlighting editor that supports direct code
execution, as well as tools for plotting, history, debugging and workspace management. In RStudio,
you have access to a console and a script editor. You can either type your own command directly
into the console, run the entire script (CTRL+SHIFT+ENTER), or just run the current line in the script
(CTRL+ENTER). The console is a powerful component; it is what allows us to perform interactive data
analysis. Similarly, there is a tab in the program named environment, which shows the variables that
are currently stored in the memory. You can also see the history of commands that you have typed in
the console. Lastly, there is a tab named files, which shows the files in the current working directory.
Two important packages we will need to install are tidyverse and dslabs You can install them by typing
install.packages(c("tidyverse", "dslabs")) in the console.

Data science is the centre of this class. It is the process of extracting knowledge from data, which more
often than not is messy and unstructured. R will be the tool that allows us to find patterns in data.


http://rafalab.dfci.harvard.edu/dsbook-part-1/
http://rafalab.dfci.harvard.edu/dsbook-part-1/
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Introduction to R

In R, an object is a variable that contains data. There are different types of objects, such as
vectors, matrices, data frames, etc. We can create an object by using the assignment operator <-.
For example, x <- 5 creates an object named x and assigns it the value 5. R makes a distinction
between <- and =. the former is used for assignment, while the latter is used for function arguments.
For example,

x <- 888
log(x, base = 50)

# This is the same as log(x, 50)
# but log(x, base <- 50) would be an error

By default, R has a lot of functions that require libraries in other languages, such as sqrt () and log().
An important function that you need to keep in mind is help("function_name") or ?function_name,
which displays information about the function, such as what inputs it expects or what it is computing.
The function rm(variable_name) allows us to delete an object.
R has many, many datasets included by default on your installation of the language. The way you can
access them is by the command data(). For example, data("Titanic") loads the dataset Titanic
into the memory. You can then see the contents of the dataset by typing View(Titanic).
The syntax for if—else statements is similar to that of languages like C++4; you use the keyword if
followed by the condition in parentheses, and then you use curly braces to indicate the code that will
be executed if the condition is true. You can also use the keyword else to indicate the code that will
be executed if the condition is false. For example,

a <- 888

if (x > 0) {

print ("x is positive")
} else {

print("x is negative")

}

R also has a predefined function called ifelse (), which is a vectorised version of the if-else statement.
For example,

x <- c(1, 2, 3, 4, 5)

ifelse(x > 3, "big", "small")

#0UTPUT

#[1] "small" "small" "small" "big" "big"

As you can see above, the first parameter of the function is the condition, the second the return value
if the condition is met, and the last the return value if the condition is not met. Other two predefined
functions for control are any () and all1(). The former returns TRUE if any of the elements of the vector
are TRUE, while the latter returns TRUE if all of the elements of the vector are TRUE. For example,

x <- c(TRUE, FALSE, TRUE)
any (x)

#0UTPUT

#[1] TRUE

all(x)

#0UTPUT

#[1] FALSE

For—loops can be created by using the sintax for (variable in vector) {code}. For example,

for (i im 1:10) {
print (i)
}



#0UTPUT
#[1] 1
#[1] 2
#[1] 3
#until ten (inclusive)

For—loops are not as common in R because by default, all predefined functions will also work on vectors.

1.0.1 Data Types

At any moment, you can find out the data type of a given variable using the command class().
The most common data type for R is a data frame. Data frames are conceptually a table with rows
and column, where each row represents an observation and each column represents a variable. You can
analyse the contents of a data frame by using the command head (), which shows the first 6 rows of
the data frame. Similarly, the command tail () shows the last 6 rows of the data frame. You can also
use the command str (), which shows the structure of the data frame.

If you want to access a specific element of a data frame, you can use the command df [row, column].
For example, Titanic[1, 2] returns the element in the first row and second column of the data frame
Titanic. If you want to access an entire row or column, you can use the command df [row, ] or
df [, column]. For example, Titanic[1, ] returns the first row of the data frame Titanic. Similarly,
you can access a specific column by using the $ symbol followed by the name of the column. For
example, Titanic$Survived returns the column Survived of the data frame Titanic. The way you find
out what the name of each column is is by using the command names (). For example, names (Titanic)
returns the names of the columns of the data frame Titanic.

Every column and row in a data frame is a vector, a series of values of the same type. You can
create a vector by using the command c(). For example, c(1, 2, 3) creates a vector with the values
1, 2, 3. The command seq() creates a numeric vector containing numbers in a range. For example,
seq(l, 10) creates a vector with the values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Furthermore, the
command rep() creates a vector where every entry is the first parameter passed into the command,
repeated as many times as specified in the second parameter. For example, rep(1, 10) creates a
vector with the values1, 1, 1, 1, 1, 1, 1, 1, 1, 1.

Beware!

When creating a vector using the command c(), you need to be careful with the data types
of the entries. For example, c(1, "a") will create a character vector with the values "1", "a".
This is because R will coerce the numeric value 1 into a character value "1". In general, when
different types are passed into c, lower types will be coerced into higher types. This also happens
in the case of c(1, TRUE), where the output will be numeric vector 1, 1.

The data type of a vector matches that of its entries. For example, c(1, 2, 3) is a numeric vector,
while c("a", "b", "c") is a character vector. Most of the types are pretty self-explanatory; however,
you might not have heard of the factor type. Usually used to store categorical data, this data type
consists of certain labels that in the background are stored as integers for memory efficiency purposes.
On execution, R will map these integers to the labels. You can create a factor by using the command
factor(). For example, factor(c("Hong Kong", "Panama", "Germany")) creates a factor with the
labels Hong Kong, Panama, Germany.

You can create a data frame by using the command data.frame().
signature_dish <- c("Butter Chicken", "Beef Nihari", "Char Siu Rice", "Pad Thai",

"Pho )
michelin_star <- c(TRUE, TRUE, TRUE, FALSE, TRUE)
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location <- c("India", "Pakistan", "Hong Kong", "Thailand", "Vietnam")

rating <- c(8.7, 8.7, 8.8, 6.9, 7.7)

sample _frame <- data.frame(signature_dish,michelin_star,location,rating,

stringsAsFactors = TRUE)
sample_frame

#0UTPUT

#signature_dish michelin_star 1location rating
#1 Butter Chicken TRUE India 8.7
#2 Beef Nihari TRUE Pakistan 8.7
#3 Char Siu Rice TRUE Hong Kong 8.8
#4 Pad Thai FALSE Thailand 6.9
#5 Pho TRUE Vietnam 7.7

(@) iT=10 61 A Vector Operations

In R, arithmetic operations on vectors occur element—wise. For example,

1 x <- c(1, 2, 3)
2 x <- x * 8 + 2
3 print (x)

4 #0UTPUT

5 #[1] 10 18 26

Vector—on—vector operations also occur element—wise. This implies however, that the vectors

must be of the same length.

A useful operator is %in%. This operator returns a boolean vector that indicates whether each

element of the first vector is present in the second vector. For example,

1 x <- c(1, 2, 999)

y <- c(1, 2, 3, 4, 5)
x %in% y

#0UTPUT

5 #[1] TRUE TRUE FALSE

In a way, data frames are a special type of list—lists in R can contain any type of object, including
other lists. You can create a list by using the command 1ist (). For example, 1ist(1, 2, 3) creates

a list with the values 1, 2, 3.

pet_info <- list(name = "Cookie".
type = "Cat",
age = 9,
is_cute = TRUE
favourite_toys = c("ball", "string", "mouse")
)
print (pet_info$name) #output = [1] "Cookie"
#double brackets also output the value
print (pet_info[["favourite_toys"]]) #output = [1] "ball" "string"
print (pet_info[["favourite_toys"]1]1[2]) #output = [1] "string"
#single brackets output a list with key and value
print (pet_info["favourite_toys"]) #output = \$favourite_toys
#[1] "ball" "string" "mouse"

"mouse"

It is also possible for a list not to have any keys. When this is the case, it is not possible to index
it using the $ operator, but you can use the square brackets operator and specify the index of the

element you want to access. For example, 1list(1, 2, 3)[2] returns the value 2.
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Indexing

As opposed to other programming languages, like Python and C++, R starts indexing at
1 instead of 0. A possible reason for this is the fact that in math, vectors are usually indexed
starting at 1. Be careful!

Another common object type in R is the matrix. Similarly to a data frame, a matrix is a table with
rows and columns. However, unlike a data frame, a matrix can only contain one type of data (since
you can consider them as stacks of vectors). Matrices are defined using the matrix() function. The
number of rows and columns need to be specified. For example, matrix(1:6, nrow = 2, ncol = 3)
creates a matrix with the values 1, 2, 3, 4, 5, 6 and dimensions 2 x 3. You can access specific
entries in the matrix using square brackets, where the first index is for the row and the second for
the column. sample_matrix[8,7] returns the element in the eigth row and seventh column of matrix
sample_matrix. If you want the entire row or column, just leave the corresponding index blank. It
is possible for you to access more than one column or row at a time. This will output a new matrix.
The command sample_matrix[,2:3] will output a new matrix with the second and third columns of
sample_matrix. Matrices can also be converted into data frames using the function as.data.frame().
You can assign a name to each entry of a vector, functionally giving an index to each entry. This is called
a named vector. You can create one by using the command c("namel" = valuel, "name2" = value2,
For example, c("a" = 1, "b" = 2) creates a named vector with the values 1, 2 and the names
"a", "b". You can access the values of a named vector by using the dollar sign operator. Names can also
be assigned retroactively. For instance, given the vectors c(1, 2, 3) and c("a", "b", "c"), you can
assign the names "a", "b", "c" to the first vector by using the command names (vector) <- c("a", "b",
Vectors can be used to access elements within another vector or data frame. For instance,

x <- c("a", "b", "C")
y <- c(1, 2, 3)

x [yl

#0UTPUT

#"hg" "p" nen

(@)1= et On the issue of coercion

Coercion is R’s tendency to convert data types into higher level equivalents to avoid errors.
The aforementioned numeric --> character coercion is an example of this. Whenever R does
not have any valid guesses as to what the value of a particular entry should be, it will coerce it
into a NA value. For example, c(1, 2, "a") will coerce the character value "a" into a NA value.
As you code with R, you will get used to spotting NA as you go.

1.0.2 Commands

Some essential commands will be introduced in this section. The section is not meant to be read in
one go, but rather to be used as a reference when needed.

e seq(a:b:s)
Creates a vector with a sequence of numbers in the range a to b (inclusive). s determines the
step. Unless the step is a non—integer, the data type of a sequence is integer.

e sort(v)

Sorts the vector v in ascending order. If you only want the maximum/minimum value of the
vector, you can use the command max(v) or min(v) respectively.

6
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e order(v)
Returns the indices of the vector that make it sorted. For example,

1 v <- c(1, 3, 2)
2 order (v)
3 #0UTPUT

| #1 3 2

This has useful applications when managing dataframes.

df <- data.frame(name = c("a", "b", "c"),
age = c(1, 3, 2))

index = order (df$age)

df $name [index]

5 #0UTPUT
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If you only want to access the index of the maximum or minimum element, you can use the
command which.max(v) or which.min(v)

rank (v)
Returns the rank of each element in the vector v. For example,

v <- c(88, 91, 238, 19, 7)
rank (v)

#0UTPUT

#4 5 3 2 1

S S

Defining your own functions is pretty straightforward: you only need to use the command function().
For example,

compute_avg <- function(x, arithmetic = TRUE) {
ifelse(arithmetic, sum(x) / length(x), prod(x) ~ (1 / length(x)))
}
compute_avg(c(1l, 2, 3))
#0UTPUT
#[1] 2
compute_avg(c(l, 2, 3), arithmetic = FALSE)
#0UTPUT

#[1] 1.817121

1.0.3 Plots

R has a powerful plotting system. The main way to access it is through the command plot(x,y),

where both x and y are vectors. For example,

x <- c(1, 2, 3)

y <- c(1, 4, 9)

plot(x, y)

#plot the points $(1, 1), (2, 4), (3, 9)$% inplane
Furthermore, you can add a title to the plot by using the command title("title") and labels to the
x and y axes by using the commands xlab("label") and ylab("label") respectively.
Histograms can be created by using the command hist(x), where x is a vector. Boxplots, which
demonstrate the locality, spread, and skewness groups of numerical data can be created by using the
command boxplot(x, y), where x and y are vectors.



The Tidyverse

The Tidyverse is a collection of core R open source packages that share an underlying design
philosophy, grammar, and data structures. Some of the features all the packages share are non—standard
evaluation and piping. If you want to use it in your program, you only need to add the command
library(tidyverse). The core of the Tidyverse is tidy data. A data table is in tidy format if every
row is an observation and every column is a feature. For example (our running example in this section),

1 signature_dish <- c("Butter Chicken", "Beef Nihari", "Char Siu Rice", "Pad Thai",
" PhO " )

2 michelin_star <- c(TRUE, TRUE, TRUE, FALSE, TRUE)

3 location <- c("India", "Pakistan", "Hong Kong", "Thailand", "Vietnam")

A rating <- c(8.7, 8.7, 8.8, 6.9, 7.7)

5 sample _frame <- data.frame(signature_dish,michelin_star,location,rating,
stringsAsFactors = TRUE)

6 sample _frame

8 #0UTPUT

9 #signature_dish michelin_star 1location rating
10 #1 Butter Chicken TRUE India 8.7
11 #2 Beef Nihari TRUE Pakistan 8.7
12 #3 Char Siu Rice TRUE Hong Kong 8.8
13 #4 Pad Thai FALSE Thailand ®.©
14 #5 Pho TRUE Vietnam T.7

Often, the tidy format is not immediately intuitive and can be clumsy to work with. However, it is
the most efficient way to work with data in R.
An important library part of the Tidyverse is the dplyr library. It contains functions that allow us to
manipulate data frames. Some of these are:

e mutate()
It creates a new column in the data frame. For example,

1 sample _frame <- mutate(sample_frame, rating_squared = rating ~ 2)

V]

o filter()
It filters out rows based on certain conditions. For example,

1 sample _frame <- filter (sample_frame, rating > 8)

2 sample_frame

3 #0UTPUT

4 #signature_dish michelin_star 1location rating

5 #1 Butter Chicken TRUE India 8.7
6 #2 Beef Nihari TRUE Pakistan 8.7
7 #3 Char Siu Rice TRUE Hong Kong 8.8
8
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o select()

It selects certain columns of the data frame. For example,

1 sample _frame <- select(sample_frame, signature_dish, location)

2 sample_frame

3 #0UTPUT

1 #signature_dish location

5 #1 Butter Chicken India



6 #2 Beef Nihari Pakistan
7 #3 Char Siu Rice Hong Kong
8 #4 Pad Thai Thailand
9 #5 Pho Vietnam

On the issue of tidy data

Tidy data is not always the best format for data analysis. For example, if you want to create a
scatter plot, you need to have two variables in the same column. This is not possible in tidy data.
In this case, you need to use the command gather (), which takes a data frame and gathers all
the columns into two columns: one for the variable names and one for the values. For example,

1 sample _frame %>

2 gather (key = "variable", value = "value", -signature_dish, -michelin
_star, -location)

The command gather () takes the data frame sample_frame and gathers all the columns except
signature_dish, michelin_star, location into two columns: variable and value. The
%>% operator is called the pipe operator. It takes the output of the previous command and uses
it as the first parameter of the next command. For example, a %>% b() is the same as b(a).
The opposite of gather() is spread(). This command takes a data frame and spreads two
columns into multiple columns. For example,

1 sample_frame %>%

2 gather (key = "variable", value = "value", -signature_dish, -michelin
_star, -location) %>%
3 spread (key = "variable", value = "value")

The command spread() takes the data frame sample_frame, gathers all the columns except
signature_dish, michelin_star, location into two columns: variable and value, and
then spreads the column variable into multiple columns.

Other useful commands are separate() and unite(). The former takes a column and splits it
into multiple columns, while the latter takes multiple columns and unites them into one.

A strong operator in the Tidyverse is the pipe, represented by either the %> or || > operators. It
takes the output of the previous command and uses it as the first parameter of the next command.
For example, a %>% b() is the same as b(a). We can use this operator to chain manipulations of data
frames together without the need for intermediate variables. For example,

sample_frame |> select(signature_dish, rating) |> filter(rating > 8)
sample_frame

#0UTPUT
#signature_dish ratin

g
#1 Butter Chicken 8.
#2 Beef Nihari 8.
#3 Char Siu Rice 8.
#is the same as
small_sf <- select(sample_frame, signature_dish, rating)
small _sf <- filter(small_sf, rating > 8)

small _sf

The pull() function allows us to extract a column from a data frame as a vector. For example,

sample _frame |> pull(signature_dish)
#0UTPUT
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#[1] "Butter Chicken" "Beef Nihari" "Char Siu Rice" "Pad Thai" "Pho"

The Tibbles Library is also included in the Tidyverse macropackage. A tibble is an extension
of the data frame that is easier to use because of extra functionality, such as them displaying better,
giving better error messages, and being able to hold more information about the data. Tibbles are also
able to hold more complex entries. In data frames, columns need to be vectors of numbers, strings,
or logical values; tibbles, on the other hand, can hold lists and functions. You can create a tibble by
using the command tibble (). For example,

tibble(x = 1:3, y = c("a", "b", "c"))
#0UTPUT

# A tibble: 3 x 2

# Xy

# <int> <chr>

#1 1 a

#2 2 b

#3 3 c

A common function that returns a tibble is the group_by () function. It takes a data frame and groups
it internally by a certain column — which makes other functions like summarize () operate on these
groups considering each a single entry. For example,
sample_frame |> group_by(michelin_star) |> summarise(mean_rating = mean(rating))
#0UTPUT

# A tibble: 2 x 2
# michelin_star mean_rating

# <lgl> <dbl >
#1 FALSE 6.90
#2 TRUE 8.07

The summarise () function, which takes a data frame and a function, returns a tibble with the result
of applying the function to each column of the data frame. For example,

sample_frame |> group_by(location) |> summarise(integer_rating = as.integer (
rating))

#0UTPUT

#location integer_rating
#1 India

#2 Pakistan

#3 Hong Kong

#4 Thailand

#5 Vietnam

~N O 00 00 00

Conditionals in the tidyverse are different to those in base R. The case_when () function takes a vector
of conditions and a vector of values and returns a vector with the values that correspond to the first
condition that is met. For example,

x <- c(-88, 19, 22, 69, 77)

case_when(x < 0O ~ "negative",
x == 0 ~ "zero",
x >0 ~ "positive")
#0UTPUT
#[1] "negative" "positive" "positive" "positive" "positive"

Another useful function is between(a,b,c). It returns a boolean vector that indicates whether each
element of the vector a is within the range from b to ¢. For example,

x <- c(1, 2, 3, 4, 5)

between(x, 2, 4)

#0UTPUT

#[1] FALSE TRUE TRUE TRUE FALSE
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Importing Data

When importing data to use in an R script, it is important to make sure that R knows where to
find the file in question. This can be achieved by having the file in the default folder looked at by R or
by specifying the full path to the file. Look at the following example, where we instruct R to extract
information from the file cheese_guide.csv stored in the folder data:

filename <- "cheese_guide.csv"

directory <- "data"

full_path <- file.path(directory, filename)
file.copy(full_path, filename, overwrite = TRUE)

#once the file is in the default folder, we can import it
6 cheese_guide <- read_csv("cheese_guide.csv")

7 #This function is defined in the tidyverse

IS N N

A function essential when it comes to handling files is 1ist.files(), which returns a vector with the
names of all the files in a given directory. Similarly, the function getwd() returns the name of the
current working directory. We can always read files from the current working directory by using the
command read_csv("filename").

Readr amd readrxl are two libraries contained in the Tidyverse that have functions to read different
types of data files. Take a look at the summary of such functions below:

’ Function ‘ Format Typical Suffix ‘
read_csv() Comma-separated values .csv
read_tsv() Tab-separated values .tsv

read_delim() Delimited files .txt
read fwf () Fixed—width files .txt
read_excel() Excel spreadsheets .xlsx
read_table() Tabular data .txt
read_x1s Legacy Excel spreadsheets .x1ls

Table 1.1: Summary of readr and readxl functions

1.0.4 data.table

data.table is perhaps the most prominent package to handle data frames, also known as tables.
This section will cover some useful functions that are found in the package.

e setDT(d)
This command allows us to convert a data frame into a data table, the argument d thus being a
data frame. For example,

1 setDT (sample_frame)

V)

e datatable[, a:= f]
This method allows us to easily add column a to the data table datatable by applying function
f to the data table. For example,

1 sample _frame[, rating_squared := rating ~ 2]

N

This function can take in several arguments, where each column must be delimited with the :=
operator.
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e datatable[condition, (a,b)]
This method allows us to select certain rows in columns a, b of the data table datatable based
on a condition. For example,

1 sample _frame[rating > 8, (signature_dish, location)]

2 #0UTPUT

3 #signature_dish location

| #1 Butter Chicken India
5 #2 Beef Nihari Pakistan

6 #3 Char Siu Rice Hong Kong

e datatable[condition, (a,b), by = cl
This method allows us to select certain rows in columns a, b of the data table datatable based
on a condition, grouping the data by column c.

e datatablel[a, . (b, c)]
This method allows us to summarise the data contained in column a of the data table datatable
by applying functions b and ¢ to it. For example,

1 sample _frame[, .(mean_rating = mean(rating), max_rating = max(rating))]
2 #0UTPUT

3 #mean_rating max_rating

1 #1: 8.36 8.8

e datatable[order(a, decreasing = BOOLEAN_VALUE)]
This method allows us to order the data table datatable by column a in either ascending or
descending order.

Data Visualisation

The most popular package employed to create graphs is ggplot2. The power of this package lies in
its capacity to generate graphs by layers, where each layer defines geometries, computes summary
statistics, determines what scales to use, and other parameters, something known as a grammar of
graphics(gg). An important limitation of this package is that the data that is input to it must be in
tidy form. The typical syntax we follow to achieve this is DATA > ggplot() + LAYERA + LAYER B +
... | Here is an example of this syntax in action:

sample _frame |> ggplot() + geom_point(aes(x = location, y = rating)) + geom_text(
aes (location, rating, label = abb))

What this code does is take the data frame sample_frame and create a scatter plot with the location
of the restaurant on the x—axis and the rating on the y—axis. The first step to instantiate a plot is to
define a ggplot object, which is initialised with the function ggplot (). After creating this object, it
is time to add layers. The first layer we add is the geom_point () layer, which creates a scatter plot.
The argument of this function is the aes () function, which stands for aesthetic. The aes() function is
used to map variables to aesthetics, which are visual properties of the graph. For example, the aes()
function in the previous example maps the variable location to the x—axis and the variable rating to
the y—axis. Other properties of the data that connect with features of the graph are size and colour.
The possible arguments of the aes() function depend on the type of geeometry being used in the first
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place. You can use the help() function to find out more about the possible arguments of a function.
In the above example, we added another layer to the plot, the geom_text () layer. This layer adds text
to the graph. The argument of this function is the aes () function, which maps the variable location
to the x—axis, the variable rating to the y—axis, and the variable abb to the label of the text.

Anatomy of a graph

For easier understanding, we can breakdown the components of a plot into
1. Data: The data that is being plotted.

2. Geometry: The type of plot that is being created. Some examples of geometry are
scatterplot, barplot, histogram, smooth densities, qqplot, and boxplot.

3. Aesthetic mapping: The mapping of variables to visual properties of the graph. Some
examples of aesthetic mapping are x—axis, y—axis, size, and colour. The way we define the
mapping depends on the geometry we have chosen.

You can also scale the axis by adding the scale_x_continuous() and scale_y_continuous()
layers. For example,

sample_frame |> ggplot() + geom_point(aes(x = location, y = rating, label = abb))
+ scale_x_continuous (breaks = seq(0, 10, 1))

The argument of the scale_x_continuous function in this example specifies that the x axis should be
scaled from 0 to 10 with a step of 1. Similarly, the argument could be trans = "log10", which has
the effect of scaling the axis logarithmically. This transformation is so common that actually ggplot2
provides two functions that perform this automatically: scale_x_logl0() and scale_y_logl0().
There are specific layers you can add for colour (gem_point(size = int, color = "colour_name")),
axis labels (x1ab() and ylab()), and graph title (ggtitle()).

The function gplot() allows you to create graphs more directly and concisely — the q stands for
quick! For example,

gplot(x = location, y = rating, data = sample_frame)

In a single line of code, we have created a scatter plot with the location of the restaurant on the x—axis
and the rating on the y—axis.

Visualising Data Distributions

When it comes to data distributions, we can divide the possible data types in two categories:

e (Categorical Type: The data is divided into small groups with many data points in each group, for
example male or female. For example, the location of the restaurant in our running example.
The data in this category can be divided in ordinal groups, where they have a natural order
(e.g. low, medium, high), or non—ordinal groups, where they do not have a natural order. Bar
plots are effective for this types of data.

e Numeric Type: In general, the data is divided in many groups with few data points in each group.
The groups can be discrete or continuous. Histograms are good for this kind of data.
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The most basic statistical summary of a list of objects or numbers is its distribution, a description of
a list with many entries. When the data is numeric, the task of displaying its distribution is not trivial.
When data is not categorical, its distribution is often defined in terms of a mathematical function;
generally, the one used is the empirical cumulative distribution function (eCDF). This function can be
plotted using the ecdf () function. Barplots can be generated by using the geom_bar () geometry. For
example,

sample_frame |> ggplot() + geom_bar(aes(x = location))

This function is however not as popular because it does not easily represent features of the data such
as the symmetry of the distribution, the modes, or the presence of outliers. An alternative to this
kind of graph is the histogram, which is a graph that represents the distribution of data by grouping
it into bins and plotting the number of entries in each bin — suitable for the numeric type of data.
Histograms are generated using geom_histogram(). The only required argument for a histogram is x,
the variable for which we will build a histogram. For example,

sample _frame |> ggplot() + geom_histogram(aes(x = rating), binwidth = 0.5)

The Normal Distribution

Also known as the bell curve or the Gaussian distribution, it is a function that represents the
distribution of many random variables as a symmetrical bell-shaped curve about the mean.
The mean determines the location of the centre of the graph, while the standard deviation
determines the height and width of the graph. Data near the centre is more likely to occur, while
data far from the centre is less likely to occur. The normal distribution is a good approximation
for many real-world phenomena, such as the distribution of heights or weights of a population.
Mathematically, it can be defined as follows:

Another approach to the representation of numeric data is the smooth density plot, which is a graph
that represents the distribution of data by smoothing it out and plotting its density. For any interval,
the area under the curve of that interval gives us an approximation of what proportion of the data is
in the interval. An advantage of smooth density plots is that they make it easier to compare several
distributions, particularly because of its smoothness — as opposed to the rugged edges of a histogram.
Density plots are created using the geometry geom_density (). For example,

sample _frame |> filter(michelin_star == TRUE) |> ggplot(aes(x = rating, fill =
michelin_star)) + geom_density(fill = "red")

The most classical way to summarise a numeric dataset is through displaying its normal distribution.
If our data is approzimately normally distributed, we can match our data to a normal distribution by
matching the average and standard deviation of the data to that of the normal distribution. For a
list of numbers contained in vector v, the average is defined as m <- sum(x) / length(x) and the
standard deviation is defined as sd <- sqrt(sum((x-mu)~2) / length(x)). R has two pre-build
functions that achieve this, given a numeric input as an input: mean(x) and sd(x). An example of
representing data through its normal distribution is:
sample _frame |> ggplot(aes(x = rating)) + geom_histogram(aes(y = ..density..),

binwidth = 0.5) + stat_function(fun = dnorm, args = list(mean = mean(sample_frame
$rating), sd = sd(sample_frame$rating)))

The boxplot is a powerful way to summarise the distribution of data. It is a graph that represents the
distribution of data by dividing it into quartiles. The boxplot is defined by five values: the minimum,
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the first quartile, the median, the third quartile, and the maximum. The boxplot is a good way to
compare several distributions, particularly because of its simplicity. Boxplots are created using the
geometry geom_boxplot (). For example,

sample_frame |> ggplot(aes(x = location, y = rating)) + geom_boxplot ()

Notice that in the case of boxplots, we need two arguments: x, the categories, and y, the values.

Statistics in R

Although both probability and statistics handle data, the first field tries to predict information

from this data, whereas statistics tries to extract information from it.
Consider a histogram, where the data is put into bins according to its value. The smaller the bin
is, the smoother the histogram curve will be. When we arrive at a bin width of zero, the histogram
becomes a smooth curve that provides the most accurate information about certain continuous data —
this is known as the distribution of the data.

Using the knowledge we have acquired of normal distributions, assume we have a data set heights
containing the heights of different students. Now, assume that we want to find out the percentage of
students whose height <=175. This can directly be obtained by

library(dslabs)
data("heights")

str (heights)
mean (heights$height <= 175)

R provides us a tool to find a probability of a distribution using the pnorm() function. For example,
if we want to find the probability of a student being shorter than 175cm, we can use the command
pnorm(175, mean = mean(heights$height), sd = sd(heights$height)). The first argument is
the value we want to find the probability of, while the second and third arguments are the mean and
standard deviation of the distribution respectively. Specifically for the case of the normal distribution,
this function would be called via pnorm(x, mean=0, sd=1), where x is the value we want to find the
probability of.

Using the function gnorm(), we can achieve the converse of what we did with the previous func-
tion; namely, we can find the data point with P(x < a) = p for a given p. For example, if
we want to find the height of a student such that P(z < a) = 0.5, we can use the command
gnorm(0.5, mean = mean(heights$height), sd = sd(heights$height)).

Statisticians obtain new information from data through inference, a process that consists in taking
a sample of a population, computing its parameters, and making probable propositions about fixed
parameters of that population that are unknown to statisticians.

Standard Deviation

The standard deviation is a measure of the amount of variation or dispersion of a set of
values. A low standard deviation indicates that the values tend to be close to the mean of the
set, while a high standard deviation indicates that the values are spread out over a wider range.
Mathematically, it is defined as follows:

1N
o ;:1 (x; — 1)
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An important concept to keep in mind during inference is that of a confidence interval. A
confidence interval is a range of values that is likely to contain an unknown population parameter, with
a certain level of confidence. For example, if we want to find the confidence interval of the mean of a
population, we can use the command t.test(heights$height). The output of this command is a list
of values, the most important of which are conf.int, which is the confidence interval, and p.value,
which is the probability of the mean being equal to the value we have found. A pretty interesting
concept is that of the 95% confidence interval. This is the interval that contains the true mean of the
population 95% of the time. It can be computed as follows:

1 s = sample (heights$height, 100)

2 mean (s)

3 #Assume it is 0.58

1 sd (s)

5 #Assume it is 0.496045

6 mean(s) - 1.96 * sd(s) / sqrt(100)

7 #0.4827752
8 mean(s) + 1.96 * sd(s) / sqrt(100) #100 = sample size
9 #0.6772248

10 #This means with probability 95% the population %p is between those two values

Data Wrangling

Data wrangling is the process of cleaning and unifying messy and complex data sets for easy access
and analysis. It is a fundamental part of the data science process. A common technique to reshape a
data frame is the pivot_longer () method. This method will select a subset of columns and combine
them into two columns — one for the variable names and one for the values. This is useful in cases in
which the input data is not in a tidy format. For example,

library(tidyverse)

1
2 library(dslabs)

3 path <- system.file("extdata", package = "dslabs")

4 filename <- file.path(path, "fertility-two-countries.csv")

5 wide _data <- read_csv(filename)

6 #This contains:

7 #country 1960’ ’1961° 719627 71963 ’1964° 71965 71966

8 #<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

9 #1 Canada 3.923 3.909 318173 3.826 3712 3.716 3.662
10 #2 Mexico 6.775 6.817 6.858 6.898 6.936 6.973 7.009

11 #We can use the pivot_longer () method to reshape this data frame

12 long_data <- pivot_longer(’1960°:’2015’, names_to = ’year’, values_to = ’

fertility’)
13 #This contains:

14 #country year fertility
15 #<chr> <chr> <dbl>

16 #1 Canada 1960 3.923
17 #2 Canada 1961 3.909
18 #3 Canada 1962 3.873
19 #4 Canada 1963 3.826
20 #5 Canada 1964 3.772
21 #6 Canada 1965 3.716
22 #etc
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The reverse operation of pivot_longer() is pivot_wider (). This method will select a column and
then break it into columns whose names are the values of the original column. Another useful command
is separate(). This command takes a column and splits it into multiple columns. For example,

1 #Consider tabled

2 ## # A tibble: 6 x 3

3 ## country year rate
4 ## <fctr> <int> <chr>
5 ## 1 Afghanistan 1999 745/19987071
6 ## 2 Afghanistan 2000 2666/20595360
7 ## 3 Brazil 1999 37737/172006362
8 ## 4 Brazil 2000 80488/174504898
9 ## 5 China 1999 212258/1272915272
10 ## 6 China 2000 213766/1280428583
11 table3 %>%

12 separate (rate, c("cases", "population"), sep="/")
13 # A tibble: 6 x 4

14 ## country year cases population
15 ## x <fctr> <int> <chr> <chr>
16 ## 1 Afghanistan 1999 745 19987071
17 ## 2 Afghanistan 2000 2666 20595360
18 ## 3 Brazil 1999 37737 172006362
19 ## 4 Brazil 2000 80488 174504898
20 ## 5 China 1999 212258 1272915272
21 ## 6 China 2000 213766 1280428583

The inverse of separate() is unite(). This command takes multiple columns and unites them into
one. For example,

1 #Consider table4a
2 # A tibble: 3 x 3

3 ## country year cases
4 ## <fctr> <int> <int>
5 ## 1 Afghanistan 1999 745
6 ## 2 Brazil 1999 37737
7 ## 3 China 1999 212258
8 tableda %>%

9 unite (new, country, year, sep = "_")
10 # A tibble: 3 x 2

11 ## new cases

12 ## <chr> <int>

13 ## 1 Afghanistan_1999 745

14 ## 2 Brazil _1999 37737

15 ## 3 China_1999 212258

The method family join() allows us to combine multiple data frames into one. For example,

1 #Consider tablel

2 # A tibble: 6 x 3

3 ## country year cases

4 ## <fctr> <int> <int>

5 ## 1 Afghanistan 1999 745

6 ## 2 Afghanistan 2000 2666

7 ## 3 Brazil 1999 37737

8 ## 4 Brazil 2000 80488

9 ## 5 China 1999 212258

10 ## 6 China 2000 213766

11 #Consider table2

12 # A tibble: 6 x 3

13 ## country year population
14 ## <fctr> <int> <int >
15 ## 1 Afghanistan 1999 19987071
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## 2 Afghanistan 2000 20595360
## 3 Brazil 1999 172006362
## 4 Brazil 2000 174504898
## 5 China 1999 1272915272
## 6 China 2000 1280428583

tablel ¥%>%
left_join(table2)

## Joining, by = c("country", "year")

# A tibble: 6 x 4

## country year cases population
## <fctr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

The left_join() method takes two data frames and combines them into one, keeping all the rows of
the first data frame and adding the columns of the second data frame. The right_join() method
does the same, but keeping all the rows of the second data frame. The inner_join() method keeps
only the rows that are common to both data frames. The full_join() method keeps all the rows of
both data frames.

Web Scraping

Web scraping is the process of extracting data from websites. It is a useful tool for data scientists

because it allows them to collect data from the internet and use it in their projects. The rvest package
is a powerful tool for web scraping. It allows us to extract data from HTML and XML documents.
The read_html () function allows us to read HTML documents. For example,

library (rvest)

url <- "https://en.wikipedia.org/wiki/List_of_countries_by_population_(United_
Nations)"

page <- read_html (url)

page

#0UTPUT

#{html_document}

#<html lang="en">

#[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">\
n<title>List of countries by population (United Nations) - Wikipedia</title>\n<

#[2] <body class="mediawiki 1ltr sitedir-1ltr mw-hide-empty-elt ns-0 ns-subject
page-List_of_countries_by_population_United_Nations rootpage-List_of_countries_by
_popul

class (page)

#0UTPUT

#[1] "xml_document" "xml_node"

The html_nodes () function allows us to extract nodes from HTML documents. For example,

page <- read_html("https://en.wikipedia.org/wiki/List_of_countries_by_total_
wealth")

page |> html_nodes("table") [|> head()

#0UTPUT
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{xml_nodeset (6)}

#[1] <table class="wikitable
billions USD), Credit Suisse
="#cite

#[2] <table class="wikitable
billions USD), Credit Suisse
="#cite

#[3] <table class="wikitable
billions USD), Credit Suisse
="#cite

#[4] <table class="wikitable
billions USD), Credit Suisse
="#cite

#[5] <table class="wikitable
billions USD), Credit Suisse
="#cite

#[6] <table class="wikitable
billions USD), Credit Suisse

sortable">\n<caption>Countries by total wealth (
(2019) <sup id="cite_ref-1" class="reference"><a href

sortable">\n<caption>Countries by total wealth (
(2018) <sup id="cite_ref-1" class="reference"><a href

sortable">\n<caption>Countries by total wealth (
(2017) <sup id="cite_ref-1" class="reference"><a href

sortable">\n<caption>Countries by total wealth (
(2016) <sup id="cite_ref-1" class="reference"><a href

sortable">\n<caption>Countries by total wealth (
(2015) <sup id="cite_ref-1" class="reference"><a href

sortable">\n<caption>Countries by total wealth (
(2014) <sup id="cite_ref-1" class="reference"><a href

="#cite

page <- page |> setNames(c("Country", "Total Wealth", "Share of Global Wealth"))
head (page)

#0UTPUT

# Country Total Wealth Share of Global Wealth

#1 USA 360.6 25.0%

#2 China 63.8 17.7%

String Patterns

A string is a sequence of characters. A pattern is a sequence of characters that define a string. A
regular expression is a sequence of characters that define a pattern. Regular expressions are used to
search for patterns in strings. You can reference the table below for a summary of the most common
regular expressions:

‘ stringr ‘ Task ‘ Description R-Y
str_detect() Detect presence Does a string contain the pattern? grej
str_which() Locate pattern Returns the index of all entries that contain the pattern gre
str_subset () Detect Extract elements that match the pattern gre
str_locate() Locate pattern | Returns position of the first occurrence of pattern in the string | grege

str_locate_all() | Locate pattern Returns position of all occurrences of pattern in the string grege
str_view() Visualise View the matches N

Table 1.2: Summary of stringr functions

Let us look at an example. In this table, a column we expect to be numeric is actually a character
vector due to the presence of a comma. We can eliminate this using str_replace_all as

library(tidyverse)
library (dslabs)

data ("murders")

murders |> mutate(rate =
O

#0UTPUT

str_replace_all(rate, ".", " ") |> as.numeric()) |> head
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6 # state abb region population total non_citizens rate

7 #1 Alabama AL South 4779736 135 4 3
8 #2 Alaska AK West 710231 19 0 2
9 #3 Arizona AZ West 6392017 232 5 4
10 #4 Arkansas AR South 2915918 93 4 3
11 #5 Califormia CA West 37253956 1257 27 3
12 #6 Colorado CO West 5029196 65 31

Regular expressions are a powerful tool for searching and manipulating strings. They are a sequence
of characters that define a search pattern. They are used to search for patterns in strings. The stringr
package provides a set of functions that allow us to work with regular expressions. The str_detect ()
function allows us to detect the presence of a pattern in a string. For example,

library(stringr)

1
2 example <- c("abc", "1lab", "888", "alb", "alb2c3")
3 str_detect (example, "(a)(b)")

A #0UTPUT

#[1] TRUE TRUE FALSE FALSE FALSE

Regular expressions are explained in detail in this cheatsheet.

Machine Learning

In Machine Learning, our goal is to build an algorithm that takes feature values as inputs and
returns a prediction for the outcome. In this section, we will cover the supervised learning approach, in
which we:

1. Prepare a data set of <input, label> pairs
2. Feed this dataset to the model building algorithm as input

The model building algorithm is a function that takes the data set as input and returns a model as
output. The model is a function that takes the input as input and returns the label as output. There
is only a handful of these models available on R and they are straightforward to implement. Often,
you can pick several, train them, and compare their performance to pick the best one.
As opposed to traditional programming, machine learning programming requires approximately correct
answers rather than exact answers. This is because machine learning handles predictions. If our answers
are too exact, a phenomenon called overfit occurs, where the model is too specific to the training data
and does not generalise well to new data.
When preparing the dataset to feed into the model, we need to divide it into two: training dataset
and testing dataset. The training dataset is used to train the model, while the testing dataset is used
to evaluate the performance of the model. We do not need to manually do the splitting; instead, we
use the createDataPartition() function from the caret package. For example,

library (caret)

library (dslabs)

data("murders")

set.seed (1)

index <- createDataPartition(murders$state, times = 1, p = 0.7, list = FALSE)
6 #times k means we want to create k partitions

#p is the proportion of the data we want to use for training
8 #list = FALSE means we want to return a vector of indices instead of a list of
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indices
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The accuracy of a trained model is the number of correct predictions divided by the total number
of predictions; this is not the only metric you should have: if the negative class only appears 1% of
the time, a model that always predicts the positive class will have 99% accuracy, but it is not a good
model. When we are performing binary classification, there are four possibilities:

e True Positive: The model predicts the positive class and the prediction is correct.

o False Positive: The model predicts the positive class and the prediction is incorrect.
e True Negative: The model predicts the negative class and the prediction is correct.

o False Negative: The model predicts the negative class and the prediction is incorrect.

These four cases are summarised in the confusion matrix, where the rows represent the actual class
and the columns represent the predicted class. Using these data, we can use two new metrics:

e Sensitivity: The proportion of positive cases that are correctly identified. It is defined as:

True Positives

Sensitivity =
Y True Positives + False Negatives

e Specificity: The proportion of negative cases that are correctly identified. It is defined as:

True Negatives

Specificity =
pectlicity = - = Negatives + False Positives

Specificity can also be measured as precision, which is defined as:

True Positives

Precision =
True Positives + False Positives

e« F1 Score: A combination of sensitivity and precision. It is defined as:

Precision x Sensitivity

F1 Score = 2 x —
Precision + Sensitivity

Besides these, another way of evaluating the performance of a model is through its receiver operative
characteristic (ROC) curve. This curve plots the sensitivity against the specificity of a model. The
area under the ROC curve is a measure of the performance of the model. The closer the area is to 1,
the better the model is.

Let us study some commonly—used machine learning algorithms:

e Linear regression: its goal is to find the line y = mx + ¢ that best fits the data. This is achieved
by minimising the sum of the squared errors. Let us see an example:

1 install.packages ("caret","HistData")
library (caret)

library (HistData)

library(tidyverse)

w N

5 galton_heights <- GaltonFamilies |> filter(gender == ’male’) |> group_by
(family) |> sample_n(1) |> ungroup() |> select(father, childHeight) |[>
rename (son = childHeight)

6 #this produces a table with two columns: father and son
7 y <- galton_heights$son

8 test_index <- createDataPartition(y, times = 1, p = 0.7, list = FALSE)
9 train_set <- galton_heights |> slice(-test_index)
10 test_set <- galton_heights |> slice(test_index)
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#slice selects rows by indexes.

fit <- Im(son ~ father, data = train_set)

#son ~ father means son is the dependent variable and father is the
independent variable

#the predict function is then

predict (fit, test_set)

Logistic regression: its goal is to find the line y = mx + ¢ that best fits the data. This is achieved
by minimising the sum of the squared errors. Let us see an example:

library (caret)

library(dslabs)

data ("murders")

set.seed (1)

index <- createDataPartition(murders$state, times = 1, p = 0.7, list =
FALSE)

train_set <- murders |> slice(-index)

test_set <- murders |> slice(index)

fit <- glm(state ~ population, data = train_set, family = "binomial")
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