
Version Control

Notes by José A. Espiño P. 1

Spring Semester 2023–2024

1The content in these notes is sourced from what was covered in the course the document is named
after. I claim no autorship over any of the contents herein.

https://www.coursera.org/programs/career-academy-for-the-hong-kong-university-ggxzu/professional-certificates/meta-android-developer?authProvider=hku


Contents

1 Software Collaboration 2

2 Command Line 3

3 Working with Git 5

1 Software Collaboration

Version Control, also known as source control or source code management, is a system that
records all modifications to the files in a project for tracking purposes and it allows for the re-
covery of previous versions of the files. This is achieved by providing developers with access
to all previous versions of the code. It is also a tool for collaboration, as it allows for the coor-
dination of the work of multiple developers. For tracking purposes, all changes are recorded
with the identity of the person who made them, the time they were made, and a description of
the changes. Another powerful aspect of version control is peer review, a process where other
developers can review the changes made by a developer before they are merged into the main
codebase, thus catching bugs and ensuring the code is of good quality. Version control is a
key element of development operations (DevOps), a set of practices that aim to automate and
integrate the processes between software development and IT teams, so they can build, test,
and release software faster and more reliably. Often, DevOps philosophy implies the use of
processes from the agile methodology, in which a team normally plans an executes work in
spans of two weeks, known as iterations. Each iteration has a set of goals and a set of tasks
that need to be completed.
There are two key types of control systems. Centralised control systems (CVCS) are systems
where all the files are stored in a central server, and developers (clients) download the files to
their local machines to work on them. They then upload the files back to the server when they
are done. Every operation needs a connection to the server itself. Furthermore, viewing the
history of changes requires that you are connected to the server to retrieve and view them.
This kind of system is more accessible and gives more access controls to users, but it might
be slower. The other kind of control system is the distributed control system (DVCS), where
every developer has a copy of the entire repository on their local machine—essentially, every
user is a server. This allows for offline work and faster operations, but it might be harder to
manage access controls.
Some common tools usually used in conjunction with version control systems are:

• Workflow: A set of rules that dictate how the code is managed and how changes are
made.

• Continuous Integration: A practice where developers integrate their code into a shared
repository frequently, usually several times a day. Each integration is verified by an au-
tomated build, allowing teams to detect problems early. This also reduces the number
of merge conflicts.

2



• Continuous Delivery: A practice where code changes are automatically built, tested,
and prepared for a release to production. This allows for faster and more reliable re-
leases.

• Continuous Deployment: A practice where every change that passes previous stages
is released onto a test (staging) environment to validate the deployment package and
software changes. Once validated, it is deployed automatically to the live (production)
environment for customers.

2 Command Line

The command line is just one of many ways to interact with your computer; as opposed
to GUIs, however, it allows developers to perform tasks more directly and efficiently. It is
a text–based interface that lets you communicate with your computer through commands.
Commands can be used alongside flags, which modify the command by either changing or
extending their functionality. Let us start with some of the most basic commands:

• cd
Stands for change directory. It is used to point the command line to a specific directory.
For example, cd / will take you to the root directory, and cd .. will take you to the
parent directory.

• touch
This command is used to create a new file. For example, touch file.txt will create a
new file called file.txt.

• mkdir
This command is used to create a new directory. For example, mkdir new_directory
will create a new directory called new_directory.

• history
This command is used to display a list of all the commands that have been entered in
the command line.

• code
This command is used to open Visual Studio Code from the command line.

• man
This command is used to display the manual for a specific command. For example, man
ls tells you detailed instructions on the use of the command ls.

• ls
This command is used to list the contents of a directory. For example, ls will list all
the files and directories in the current directory. Some common flags used with this
command are -a to list all files, including hidden ones, and -l to list files in long format,
which includes permissions, owner, group, size, and date.

3



• pwd
This command is used to display the current directory. For example, pwd will display
the current directory.

• mv
This command is used to move files or directories. For example, mv file.txt new_directory
will move the file file.txt to the directory new_directory.

• rm
This command is used to remove files or directories. For example, rm file.txt will
remove the file file.txt.

• cp
This command is used to copy files or directories. For example, cp file.txt new_directory
will copy the file file.txt to the directory new_directory.

• cat
This command is used to display the contents of a file. For example, cat file.txt
will display the contents of the file file.txt.

• less
This command is used to display the contents of a file one page at a time. For example,
less file.txt will display the contents of the file file.txt one page at a time.

• grep
This command is used to search for a specific string in a file. For example, grep "string"
file.txt will search for the string "string" in the file file.txt.

• wc
This command is used to count the number of lines, words, and characters in a file. For
example, wc file.txt will display the number of lines, words, and characters in the
file file.txt.

You can create your own commands by creating a shell script. A shell script is a file that
contains a sequence of commands for a shell to execute. To create a shell script, you need
to create a file with the extension .sh and write the commands you want to execute in it.
For example, the following is a simple shell script that prints "Hello, World!" to the command
line:

1 #!/bin/bash
2 echo "Hello , World!"

Note that shell script must always start with #!/bin/bash to indicate that it is a shell script.
You can then execute the shell script by running the command ./script.sh in the command
line. Before you can execute the script, you need to give it execute permissions by running
the command chmod +x script.sh.
Pipes are another strong element of pipes: they allow you to use the output of a command as
the input of another. For example, the command ls | grep "file" will list all the files in

4



the current directory and then search for the string "file" in the output.
Linux commands take an input and give an output. Redirection allows us to change what
exactly will be the input and output of a given command. There are three main types of IO
redirections: standard input, which is represented by a zero, standard output, which is rep-
resented by a one, and standard error, which is represented by a two. If you want to redirect
the standard input from the keyboard to, say, the output of a command, you can use the <
operator. For example, the command cat < file.txt will display the contents of the file
file.txt. If you want to redirect the standard output of a command to a file, you can use the
> operator. For example, the command ls > files.txt will list all the files in the current
directory and write the output to the file files.txt, as opposed to the output being sent to
your computer screen.. If you want to redirect the standard error of a command to a file, you
can use the 2> operator. For example, the command ls 2> error.txt will list all the files
in the current directory and write any errors to the file error.txt. If you want to append the
standard output of a command to a file, you can use the » operator. For example, the com-
mand ls » files.txt will list all the files in the current directory and append the output to
the file files.txt.
Grep stands for global regular expression print and it is a tool for searching for a specific string
in a file using regular expressions. Some common flags used with this command are -i to ig-
nore case, -v to invert the match, and -c to count the number of matches. Exact matches can
be found using the -w flag.

3 Working with Git

Git is a version control system that helps users keep track of the changes made to any of the
files in a project. It was originally designed by Linus Torvalds to keep track of all the changes
made to the Linux kernel. A closely related service to git is GitHub, which is a cloud–based
hosting service that lets you manage Git repositories from a user interface. It uses and ex-
tends on Git version control features, such as access control, pull requests, and automation.
Git repositories contain a file named .git that contains all the information about the repos-
itory, including the history of changes, the current state of the repository, and the configura-
tion of the repository. The .git file is hidden, so you will not see it when you list the contents
of a directory. This folder is created automatically by GitHub or manually when initialising a
repository using the command git init. Git has a three stage workflow. Firstly, the modi-
fied stage is when you have made changes to a file but it is still not tracked by Git. The second
stage, staged, is files and modifications start being tracked by Git. Lastly, the committed stage
is when the changes are saved to the repository and added to the remote repository.
Before making any changes to a repository, it is good practice to check if there are any changes
or commits that have not yet been pushed to the remote repository. You can do this by run-
ning the command git status. Once you have made modifications, you can add new/-
modified files to the staging area by running the command git add. You can then commit
the changes to the repository by running the command git commit. You can also use the
-m flag to add a message to the commit. For example, the command git commit -m "Add
new file" will commit the changes to the repository with the message "Add new file". If

5



at any point you would like to unstage a file, you just need to run the command git restore
–staged. It is important to note that the commited changes will not appear on the remote
repository until you push them. You can do this by running the command git push -u
origin main. The -u flag is used to set the upstream branch, which is the default branch
that the changes will be pushed to.
Branching is another important feature of Git. A branch is a separate line of development
that allows you to work on a feature without affecting the main codebase. You can create a
new branch by running the command git checkout -b. For example, the command git
checkout -b new_branch will create a new branch called new_branch. Another way to cre-
ate a branch is by using the command git branch. The difference is that the former com-
mand not only creates the branch but also moves you from the main branch onto the newly
created one. The main branch exists in isolation; it will only be updated with any changes
upon being merged with the main branch. Usually, this is achieved via pull requests, a way
to ask for a peer to review the changes made in the branch before merging them onto the
main branch.
The opposite of the push command is the git pull command, which is used to fetch and
merge changes from the remote repository to the local repository. The git clone command
is used to create a copy of an entire remote repository onto your computer; the difference is
that git pull just updates an already existing repository.
In Git, a head refers to the current commit that you are working on. The git log command
is used to display the history of commits in the repository. Some common flags used with
this command are –oneline to display each commit on a single line, –graph to display the
commit history as a graph, and –decorate to display the names of branches and tags next to
the commits.
Another useful command in Git is diff, which is used to display the differences between two
files. For example, the command git diff file1.txt file2.txt will display the differ-
ences between the files file1.txt and file2.txt. diff can also be sued to compare dif-
ferent commits and different branches. This is achieved by using the git diff command
followed by the commit or branch you want to compare. For example, given branch1 and
branch2, the command git diff branch1 branch2 will display the differences between
the two branches.
Blame is a useful command that is used to display the author and the last commit that mod-
ified each line of a file. For example, the command git blame file.txt will display the
author and the last commit that modified each line of the file file.txt.
Forking is a feature of GitHub that allows you to create a copy of a repository in your own
account. This is useful when you want to make changes to a repository without affecting the
original repository. Once you have made the changes, you can create a pull request to ask the
owner of the original repository to merge your changes.

6


	Software Collaboration
	Command Line
	Working with Git

